Since the establishment of the brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) in North America and Europe, there has been a large, multi-group effort to characterize the composition and impact of the indigenous community of arthropod natural enemies attacking this invasive pest. In this review, we combine 98 indigenous natural enemy datasets spanning a variety of sampling methods, habitats, and geographic areas. To date, the vast majority of H. halys biological control research has focused on the egg stage, using sentinel egg masses to characterize indigenous parasitoid and predator communities and their contribution to H. halys egg mortality. Although egg parasitism and predation levels by indigenous natural enemies are low (typically <10% each) in most surveys, total egg mortality attributable to natural enemies can be higher (typically between 5 and 25%; up to 83%)—even though these values were likely underestimated in most cases because some mortality due to biological control was not recognized. In North America, where the most data are available, it appears that the relative prevalence of different indigenous parasitoid species varies among habitat types, particularly between crop and non-crop habitats. Predator species responsible for egg mortality are much less commonly identified, but appear to include a wide variety of generalist chewing and sucking predators. To date, studies of natural enemies attacking H. halys nymphs and adults are relatively rare. Based on our review, we identify a number of key research gaps and suggest several directions for future research
Traffic through endosomes and lysosomes is controlled by small G-proteins of the Rab5 and Rab7 families. Like humans, Saccharomyces cerevisiae has three Rab5s (Vps21, Ypt52, and Ypt53), and one Rab7 (Ypt7). Here, we elucidate the functional roles and regulation of the yeast Rab5s. Using GFP-tagged cargoes, a novel quantitative multivesicular body (MVB) sorting assay, and electron microscopy, we show that MVB biogenesis and cargo sorting are severely impaired in vps21Δ ypt52Δ double mutants. Ypt53, the third Rab5 paralog, is hardly expressed during normal growth but its transcription is strongly induced by cellular stress through the calcineurin-Crz1 pathway. The requirement for Rab5 activity in stress tolerance facilitated identification of Msb3/Gyp3 as the principal Rab5 GAP (GTPase accelerating protein), and in vitro GAP assays verified that Vps21 is a preferred Gyp3 target. Finally, we demonstrate that Gyp3 spatially restricts active Vps21 to intermediate endosomal compartments by preventing Vps21 accumulation on lysosomal vacuoles. Gyp3 therefore operates as a compartmental insulator that enforces the boundary between penultimate and terminal compartments of the endolysosomal pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.