Hybrid glasses from melt-quenched metal-organic frameworks (MOFs) have been emerging as a new class of materials, which combine the functional properties of crystalline MOFs with the processability of glasses. However, only a handful of the crystalline MOFs are meltable. Porosity and metal-linker interaction strength have both been identified as crucial parameters in the trade-off between thermal decomposition of the organic linker and, more desirably, melting. For example, the inability of the prototypical zeolitic imidazolate framework (ZIF) ZIF-8 to melt, is ascribed to the instability of the organic linker upon dissociation from the metal center. Here, we demonstrate that the incorporation of an ionic liquid (IL) into the porous interior of ZIF-8 provides a means to reduce its melting temperature to below its thermal decomposition temperature. Our structural studies show that the prevention of decomposition, and successful melting, is due to the IL interactions stabilizing the rapidly dissociating ZIF-8 linkers upon heating. This understanding may act as a general guide for extending the range of meltable MOF materials and, hence, the chemical and structural variety of MOF-derived glasses.
This Feature Article reviews a range of amorphisation mechanisms of Metal–Organic Frameworks (MOFs) and presents recent advances to produce novel MOF materials including porous MOF glasses, MOF crystal–glass composites, flux melted MOF glasses and blended zeolitic imidazolate framework glasses.
Metal-organic framework (MOF) glasses have become a subject of interest as a distinct category of melt quenched glass, and have potential applications in areas such as ion transport and sensing. In this paper we show how MOF glasses can be combined with inorganic glasses in order to fabricate a new family of materials composed of both MOF and inorganic glass domains. We use an array of experimental techniques to propose the bonding between inorganic and MOF domains, and show that the composites produced are more mechanically pliant than the inorganic glass itself.
The study of polymorphic zeolitic imidazolate frameworks demonstrates the influence of linker chemistry and framework structure on their thermal behaviour.
Target-induced DNA strand displacement is an excellent candidate for developing analyteresponsive DNA circuitry to be used in clinical diagnostics and synthetic biology. While most available technologies rely on DNA circuitry free to diffuse in bulk, here we explore the use of liposomes as scaffolds for DNA-based sensing nanodevices. Our proof-of-concept sensing circuit responds to the presence of a model target analyte by releasing a DNA strand, which in turn activates a fluorescent reporter. Through a combination of experiments and coarse-grained Monte Carlo simulations, we demonstrate that the presence of the membrane scaffold accelerates the process of oligonucleotide release and suppresses undesired leakage reactions, making the sensor both more responsive and robust.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.