The gut microbiome comprises the collective genome of the trillions of microorganisms residing in our gastrointestinal ecosystem. The interaction between the host and its gut microbiome is a complex relationship whose manipulation could prove critical to preventing or treating not only various gut disorders, like irritable bowel syndrome (IBS) and ulcerative colitis (UC), but also central nervous system (CNS) disorders, such as Alzheimer’s and Parkinson’s diseases. The purpose of this review is to summarize what is known about the gut microbiome, how it is connected to the development of disease and to identify the bacterial and biochemical targets that should be the focus of future research. Understanding the mechanisms behind the activity and proliferation of the gut microbiome will provide us new insights that may pave the way for novel therapeutic strategies.
Non-typhoidal Salmonella enterica is a pathogen of global importance, particularly in low and middle-income countries (LMICs). The presence of antimicrobial resistant (AMR) strains in market environments poses a serious health threat to consumers. In this study we identified and characterized the genotypic and phenotypic AMR profiles of 81 environmental S. enterica strains isolated from samples from informal markets in Cambodia in 2018–2019. AMR genotypes were retrieved from the NCBI Pathogen Detection website (https://www.ncbi.nlm.nih.gov/pathogens/) and using ResFinder (https://cge.cbs.dtu.dk/services/) Salmonella pathogenicity islands (SPIs) were identified with SPIFinder (https://cge.cbs.dtu.dk/services/). Susceptibility testing was performed by broth microdilution according to the Clinical and Laboratory Standards Institute (CLSI) standard guidelines M100-S22 using the National Antimicrobial Resistance Monitoring System (NARMS) Sensititre Gram Negative plate. A total of 17 unique AMR genes were detected in 53% (43/81) of the isolates, including those encoding tetracycline, beta-lactam, sulfonamide, quinolone, aminoglycoside, phenicol, and trimethoprim resistance. A total of 10 SPIs (SPI-1, 3–5, 8, 9, 12–14, and centisome 63 [C63PI]) were detected in 59 isolates. C63PI, an iron transport system in SPI-1, was observed in 56% of the isolates (n = 46). SPI-1, SPI-4, and SPI-9 were present in 13, 2, and 5% of the isolates, respectively. The most common phenotypic resistances were observed to tetracycline (47%; n = 38), ampicillin (37%; n = 30), streptomycin (20%; n = 16), chloramphenicol (17%; n = 14), and trimethoprim-sulfamethoxazole (16%; n = 13). This study contributes to understanding the AMR genes present in S. enterica isolates from informal markets in Cambodia, as well as support domestic epidemiological investigations of multidrug resistance (MDR) profiles.
Cattle are an important reservoir for the foodborne pathogens Salmonella and Escherichia coli O157:H7; they frequently harbor these microorganisms in their digestive tracts and shed them in their feces. Thus, there is potential for contamination of cattle hides and, subsequently, carcasses. Interventions aimed at reducing or eliminating pathogen shedding preharvest will also reduce the likelihood of beef product contamination by these pathogens. Therefore, this study used an in vitro model to evaluate Bdellovibrio bacteriovorus, a gram-negative microorganism that preys upon other gram-negative microorganisms, as a preharvest intervention to control Salmonella and E. coli O157:H7. Rumen fluid and feces were inoculated with pansusceptible or antimicrobial-resistant strains of one pathogen. Control samples were treated with HEPES buffer, whereas experimental samples were exposed to HEPES buffer plus B. bacteriovorus. Salmonella and E. coli O157:H7 populations were quantified at 0, 24, 48, and 72 h. The most-probable-number (MPN) technique, followed by streaking onto xylose lysine Tergitol 4 agar, was used to determine Salmonella populations, whereas spread plating onto sorbitol MacConkey agar supplemented with cefixime and tellurite was employed to enumerate E. coli O157:H7. B. bacteriovorus reduced pansusceptible Salmonella in cattle feces by 2.02 Log MPN/g (P = 0.0005) and antimicrobial-resistant Salmonella by 3.79 (P < 0.0001) and 2.24 (P = 0.0013) Log MPN/g after 24 and 48 h, respectively, in comparison to control samples. Significant reductions were not observed for E. coli O157:H7 in rumen or feces. These data suggest that further investigation into B. bacteriovorus efficacy as a preharvest intervention to control Salmonella in cattle is warranted.
Background: Improvements in blood culture techniques and molecular-based diagnostics have led to increased recognition of Kingella kingae as an invasive human pathogen causing bacteremia, septic arthritis, osteomyelitis and endocarditis in young children. Serious disease and potentially life-threatening complications of infection due to K. kingae necessitate timely identification and appropriate antimicrobial therapy. Ceftaroline is a fifth-generation broad spectrum cephalosporin that possesses activity against Gram-negative and Gram-positive pathogens similar to third-generation cephalosporins, but also includes methicillin-resistant Staphylococcus aureus. This study reports the in vitro activity of ceftaroline and comparator agents against an international collection of K. kingae isolates. Methods: A collection of 308 K. kingae isolates was obtained primarily from children with bacteremia, endocarditis, osteoarticular infections or from asymptomatic pediatric carriers. Isolates were tested for antibiotic susceptibility using Clinical and Laboratory Standard Institute broth microdilution methodology and screened for β-lactamase production using a nitrocefin chromogenic test. Results: Ceftaroline inhibited all K. kingae isolates at ≤0.06 mg/L (MIC50/90, 0.015/0.03 mg/L). Ceftaroline MICs were similar to results with ceftriaxone (MIC50/90, 0.015/0.015 mg/L), meropenem (MIC50/90, 0.015/0.015 mg/L) and ampicillin–sulbactam (MIC50/90, 0.06/0.06 mg/L). Ceftaroline MICs were slightly lower than MICs for cefuroxime and amoxicillin/clavulanate (MIC50/90, 0.06/0.12 mg/L). MICs were high for clindamycin (MIC50/90, 2/4 mg/L) and oxacillin (MIC50/90, 4/8 mg/L). Sixteen isolates (5.2%) yielded a positive nitrocefin test indicating production of β-lactamase; ceftaroline demonstrated equivalent MICs against β-lactamase–positive and β-lactamase–negative strains (MIC50/90, 0.015/0.3 mg/L). Conclusions: The potent activity of ceftaroline against this large international collection of K. kingae isolates supports further clinical evaluation in children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.