Acquired angioedema due to C1 inhibitor deficiency (C1INH-AAE) is a rare and potentially fatal syndrome of bradykinin-mediated angioedema characterized by episodes of angioedema without urticaria. It typically manifests with nonpitting edema of the skin and edema in the gastrointestinal (GI) tract mucosa or upper airway. Edema of the upper airway and tongue may lead to life-threatening asphyxiation. C1INH-AAE is typically under-diagnosed because of its rarity and its propensity to mimic more common abdominal conditions and allergic reactions. In this article, we present the case of a 62-year-old male with a history of recently diagnosed chronic lymphocytic leukemia (CLL) who presented to our hospital with recurrent abdominal pain, initially suspected to have Clostridium difficile colitis and diverticulitis. He received a final diagnosis of acquired angioedema due to C1 esterase inhibitor deficiency due to concomitant symptoms of lip swelling, cutaneous nonpitting edema of his lower extremities, and complement level deficiencies. He received acute treatment with C1 esterase replacement and icatibant and was maintained on C1 esterase infusions. He also underwent chemotherapy for his underlying CLL and did not experience further recurrence of his angioedema.
The various iterations of the HapMap Project and many genome-wide association studies (GWAS) have identified hundreds of potential genes involved in monogenic and multifactorial traits. We constructed an arrayed 115,000-member human genomic library in the PAC shuttle vector pJCPAC-Mam2 that can be propagated in both bacterial and human cells. The library appears to represent a two-fold coverage of the human genome. Transient transfection of a p53-containing PAC clone into p53-null Saos-2 human osteosarcoma cells demonstrated that both p53 mRNA and protein were produced. Additionally, expression of the p53 protein triggered apoptosis in a subset of the Saos-2 cells. This library should serve as a valuable resource to validate potential disease genes identified by GWAS in human cell lines and in animal models. Also, individual library members could potentially be used for gene therapy trials for a variety of recessive disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.