Immunogenic cell death (ICD) offers a method of stimulating the immune system to attack and remove cancer cells. We report a copper(II) complex containing a Schiff base ligand and a polypyridyl ligand, 4, capable of inducing ICD in breast cancer stem cells (CSCs). Complex 4 kills both bulk breast cancer cells and breast CSCs at sub-micromolar concentrations. Notably, 4 exhibits greater potency (one order of magnitude) towards breast CSCs than salinomycin (an established breast CSC-potent agent) and cisplatin (a clinically approved anticancer drug). Epithelial spheroid studies show that 4 is able to selectively inhibit breast CSC-enriched HMLER-shEcad spheroid formation and viability over non-tumorigenic breast MCF10 A spheroids. Mechanistic studies show that 4 operates as a Type II ICD inducer. Specifically, 4 readily enters the endoplasmic reticulum (ER) of breast CSCs, elevates intracellular reactive oxygen species (ROS) levels, induces ER stress, evokes damageassociated molecular patterns (DAMPs), and promotes breast CSC phagocytosis by macrophages. As far as we are aware, 4 is the first metal complex to induce ICD in breast CSCs and promote their engulfment by immune cells.
We report the anti‐osteosarcoma stem cell (OSC) properties of a series of gallium(III)‐polypyridyl complexes (5‐7) containing diflunisal, a non‐steroidal anti‐inflammatory drug. The most effective complex within the series, 6 (containing 3,4,7,8‐tetramethyl‐1,10‐phenanthroline), displayed similar potency towards bulk osteosarcoma cells and OSCs, in the nanomolar range. Remarkably, 6 exhibited significantly higher monolayer and sarcosphere OSC potency (up to three orders of magnitude) than clinically approved drugs used in frontline (cisplatin and doxorubicin) and secondary (etoposide, ifosfamide, and carboplatin) osteosarcoma treatments. Mechanistic studies show that 6 downregulates cyclooxygenase‐2 (COX‐2) and kills osteosarcoma cells in a COX‐2 dependent manner. Furthermore, 6 induces genomic DNA damage and caspase‐dependent apoptosis. To the best of our knowledge, 6 is the first metal complex to kill osteosarcoma cells by simultaneously inhibiting COX‐2 and damaging nuclear DNA.
The anti-breast cancer stem cell (CSC) properties of a series of gold(I) complexes comprising of various non-steroidal anti-inflammatory drugs (NSAIDs) and triphenylphosphine 1-8 are reported. The most effective gold(I)-NSAID complex...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.