In this review, we provide a concise analysis of internal catalysis as an attractive design principle to combine chemical robustness with reactivity in dynamic covalent chemistry applications and a material context.
Phthalate monoesters (PMEs) were recently introduced as a simple dynamic covalent bond for implementation in covalent adaptable networks (CANs), which undergo rapid transesterifications in the absence of catalysts, due to...
During the previous decade, many popular chemical reactions used in the area of "click" chemistry and similarly efficient "click-inspired" reactions have been applied for the design of sequence-defined and, more generally, sequence-controlled structures. This combination of topics has already made quite a significant impact on scientific research to date and has enabled the synthesis of highly functionalized and complex oligomeric and polymeric structures, which offer the prospect of many exciting further developments and applications in the near future. This minireview highlights the fruitful combination of these two topics for the preparation of sequence-controlled oligomeric and macromolecular structures and showcases the vast number of publications in this field within a relatively short span of time. It is divided into three sections according to the click-(inspired) reaction that has been applied: copper-catalyzed azide-alkyne cycloaddition, thiol-X, and related thiolactone-based reactions, and finally Diels-Alder-chemistry-based routes are outlined, respectively.
Dynamic sequence‐defined oligomers carrying a chemically written pin code are obtained through a strategy combining multicomponent reactions with the thermoreversible addition of 1,2,4‐triazoline‐3,5‐diones (TADs) to indole substrates. The precision oligomers are specifically designed to be encrypted upon heating as a result of the random reshuffling of the TAD‐indole covalent bonds within the backbone, thereby resulting in the scrambling of the encoded information. The encrypted pin code can eventually be decrypted following a second heating step that enables the macromolecular pin code to be deciphered using 1D electrospray ionization‐mass spectrometry (ESI‐MS). The herein introduced concept of encryption/decryption represents a key advancement compared with current strategies that typically use uncontrolled degradation to erase and tandem mass spectrometry (MS/MS) to analyze, decipher, and read‐out chemically encrypted information. Additionally, the synthesized macromolecules are coated onto a high‐value polymer material, which demonstrates their potential application as coded product tags for anti‐counterfeiting purposes.
Sequence-defined macromolecules of high molecular weight are synthesised by the combination of click chemistry with multicomponent reactions. The synthesis is performed on solid phase as well as in solution to directly compare the two approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.