The effect of graft density and length on the ordering of spherical nanoparticles with block copolymer (BCP) grafts was investigated using a dissipative particle dynamics model with a hard nanoparticle potential and protracted colored noise dynamics (PCND). The blocks in the BCP grafts were of equal volume fraction and thus formed lamellae with the nanoparticles within the core block domain. It was found that decreased graft density increases the energy barrier when graft length was kept constant, but when the total amount of polymer per particle is constant, the energy barrier appeared constant until very low graft density. Lower graft density sharply increased the energy barrier to forming lamellae significantly, rendering sampling over that barrier, even with PCND, exceedingly slow. This is caused by a combination of congestion of nanoparticles in the center of the nanoparticle rich domains and the formation of small aggregates at low graft densities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.