All engineering systems that move through fluids can benefit from a reduction in opposing forces, or drag. As a result, there is a significant focus on finding new ways to improve the lift-to-drag ratios of systems that move through fluids. Nature has proven to be an extremely beneficial source of inspiration to overcome current technical endeavors. Shark skin, with its low-drag riblet structure, is a prime example of an evolutionary design that has inspired new implementations of drag reducing technologies. Previously, it has been shown that denticles have drag reducing properties when applied to airfoils and other surfaces moving through fluids. Researchers have been able to mimic the structure of shark skin, but minimal work has been done in terms of optimizing the design of the denticles due to the large number of parameters involved. In this work, we use a combination of computational fluid dynamics simulations and optimization methods to optimize the size and shape of shark skin denticles in order to decrease drag. Results show that by changing the size, shape, and orientation of the denticles, the boundary layer can be altered, and thereby reduce drag. This research demonstrates that denticles play a similar role as vortex generators in energizing the boundary layer to decrease drag. These mechanisms, along with the fundamental knowledge gained through the study of these drag reducing structures can be applied to a vast number of fields including aeronautical, oceanic, and automotive engineering.
We present a method for autonomous exploration of large-scale unknown environments under mission time constraints. We start by proposing the Frontloaded Information Gain Orienteering Problem (FIG-OP) -a generalization of the traditional orienteering problem where the assumption of a reliable environmental model no longer holds. The FIG-OP addresses model uncertainty by frontloading expected information gain through the addition of a greedy incentive, effectively expediting the moment in which new area is uncovered. In order to reason across multi-kilometer environments, we solve FIG-OP over an information-efficient world representation, constructed through the aggregation of information from a topological and metric map. Our method was extensively tested and fieldhardened across various complex environments, ranging from subway systems to mines. In comparative simulations, we observe that the FIG-OP solution exhibits improved coverage efficiency over solutions generated by greedy and traditional orienteering-based approaches (i.e. severe and minimal model uncertainty assumptions, respectively).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.