Optical cavities transmit light only at discrete resonant frequencies, which are well-separated in micro-structures. Despite attempts at the construction of planar ‘white-light cavities’, the benefits accrued upon optically interacting with a cavity – such as resonant field buildup – have remained confined to narrow linewidths. Here, we demonstrate achromatic optical transmission through a planar Fabry-Pérot micro-cavity via angularly multiplexed phase-matching that exploits a bio-inspired grating configuration. By correlating each wavelength with an appropriate angle of incidence, a continuous spectrum resonates and the micro-cavity is rendered transparent. The locus of a single-order 0.7-nm-wide resonance is de-slanted in spectral-angular space to become a 60-nm-wide achromatic resonance spanning multiple cavity free-spectral-ranges. The result is an ‘omni-resonant’ planar micro-cavity in which light resonates continuously over a broad spectral span. This approach severs the link between the resonance bandwidth and the cavity-photon lifetime, thereby promising resonant enhancement of linear and nonlinear optical effects over broad bandwidths in ultrathin devices.
Infrared-absorbing gold black has been selectively patterned onto the active surfaces of a vanadium-oxide-based infrared bolometer array. Patterning by metal lift-off relies on protection of the fragile gold black with an evaporated oxide, which preserves much of gold black's high absorptance. This patterned gold black also survives the dry-etch removal of the sacrificial polyimide used to fabricate the air-bridge bolometers. For our fabricated devices, infrared responsivity is improved 22% in the long-wave IR and 70% in the mid-wave IR by the gold black coating, with no significant change in detector noise, using a 300°C blackbody and 80 Hz chopping rate. The increase in the time constant caused by the additional mass of gold black is ∼15%.
Coherent perfect absorption (CPA) is an interferometric effect that guarantees full absorption in a lossy layer independently of its intrinsic losses. To date, it has been observed only at a single wavelength or over narrow bandwidths, whereupon wavelength-dependent absorption can be ignored. Here we produce CPA over a bandwidth of ∼60 nm in a 2 µm thick polymer film with a low-doping concentration of an organic laser dye. A planar cavity is designed with a spectral ‘dip’ to accommodate the dye resonant linewidth, and CPA is thus achieved even at its absorption edges. This approach allows realizing strong absorption in laser dyes—and resonant materials in general—independently of the intrinsic absorption levels, with a flat spectral profile and without suffering absorption quenching due to high doping levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.