Overall, REBOA can confer a survival benefit over RT, particularly in patients not requiring CPR. Considerable additional study is required to definitively recommend REBOA for specific subsets of injured patients.
Microtubules are rigid, proteinaceous filaments required to organize and rearrange the interior of cells. They organize space by two mechanisms, including acting as the tracks for long-distance cargo transporters, such as kinesin-1, and by forming a network that supports the shape of the cell. The microtubule network is composed of microtubules and a bevy of associated proteins and enzymes that self-organize using non-equilibrium dynamic processes. In order to address the effects of self-organization of microtubules, we have utilized the filament-gliding assay with kinesin-1 motors driving microtubule motion. To further enhance the complexity of the system and determine if new patterns are formed, we added the microtubule crosslinking protein MAP65-1. MAP65-1 is a microtubule-associated protein from plants that crosslinks antiparallel microtubules, similar to mammalian PRC1 and fission yeast Ase1. We find that MAP65 can slow and halt the velocity of microtubules in gliding assays, but when pre-formed microtubule bundles are added to gliding assays, kinesin-1 motors can pull apart the bundles and reconstitute cell-like protrusions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.