Binary liquid mixtures having a consolute point can be used as solvents for chemical reactions. When excess cerium(IV) oxide is brought into equilibrium with a mixture of isobutyric acid + water, and the concentration of cerium in the liquid phase is plotted in van't Hoff form, a straight line results for temperatures sufficiently in excess of the critical solution temperature. Within 1 K of the critical temperature, however, the concentration becomes substantially suppressed, and the van't Hoff slope diverges toward negative infinity. According to the phase rule, one mole fraction can be fixed. Given this restriction, the temperature behavior of the data is in exact agreement with the predictions of both the principle of critical point isomorphism and the Gibbs-Helmholtz equation. In addition, we have determined the concentration of lead in the liquid phase when crystalline lead(II) sulfate reacts with potassium iodide in isobutyric acid + water. When plotted in van't Hoff form, the data lie on a straight line for all temperatures including the critical region. The phase rule indicates that two mole fractions can be fixed. With this restriction, the data are in exact agreement with the principle of critical point isomorphism.
We consider the dissolution of a chemically inert solid in a binary liquid mixture with a critical point of solution. When the mixture, acting as the solvent, has come to equilibrium with the solid, the state of the system is completely described by the temperature, pressure, and a concentration variable formed by dividing the molar amount of one solvent component by that of the other. Under conditions of fixed pressure, the principle of critical point isomorphism predicts that the slope of a van't Hoff plot of the solubility of the solid should diverge toward infinity as the temperature enters the critical region. The sign of the divergence is negative when the dissolution is endothermic, whereas it is positive when the dissolution is exothermic. In experiments where excess solid phenolphthalein dissolves in a binary mixture of nitrobenzene + dodecane, we have observed exothermic dissolution concurrently with a positive divergence of the van't Hoff slope. The data are insufficiently precise to compute an accurate numerical value for the exponent of the temperature power law expected to govern this divergence; nevertheless, on the basis of Widom scaling theory, we argue that the exponent should be equal to 0.326, which is identical to the value of the exponent that governs the temperature dependence of the shape of the liquid-liquid coexistence curve. Being entirely physical in nature, the anomalous solubility effect should be observable in the case of any chemically inert solid dissolving in any one of the more than 1000 liquid pairs known to have a critical point of solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.