SUMMARY Alternative mRNA splicing provides transcript diversity and may contribute to human disease. We demonstrate that expression of several genes regulating RNA processing is decreased in both liver and skeletal muscle of obese humans. We evaluated a representative splicing factor, SFRS10, down-regulated in both obese human liver and muscle and in high fat-fed mice, and determined metabolic impact of reduced expression. SFRS10-specific siRNA induces lipogenesis and lipid accumulation in hepatocytes. Moreover, Sfrs10 heterozygous mice have increased hepatic lipogenic gene expression, VLDL secretion, and plasma triglycerides. We demonstrate that LPIN1, a key regulator of lipid metabolism, is a splicing target of SFRS10; reduced SFRS10 favors the lipogenic β isoform of LPIN1. Importantly, LPIN1β-specific siRNA abolished lipogenic effects of decreased SFRS10 expression. Together, our results indicate that reduced expression of SFRS10, as observed in tissues from obese humans, alters LPIN1 splicing, induces lipogenesis, and therefore contributes to metabolic phenotypes associated with obesity.
Zebrafish somitogenesis is governed by a segmentation clock that generates oscillations in expression of several Notch pathway genes, including her1, her7 and deltaC. Using a combination of pharmacological inhibition and Mendelian genetics, we show that DeltaD and DeltaC, two Notch ligands, represent functionally distinct signals within the segmentation clock. Using high-resolution fluorescent in situ hybridization, the oscillations were divided into phases based on eight distinct subcellular patterns of mRNA localization for 140,000 cells. her1, her7 and deltaC expression was examined in wild-type, deltaD(-/-) and deltaC(-/-) embryos. We identified areas within the tailbud where the clock is set up in the progenitor cells (priming), where the clock starts running (initiation), and where the clocks of neighbouring cells are entrained (synchronization). We find that the clocks of motile cells are primed by deltaD in a progenitor zone in the posterior tailbud and that deltaD is required for cells to initiate oscillations on exiting this zone. Oscillations of adjacent cells are synchronized and amplified by deltaC in the posterior presomitic mesoderm as cell movement subsides and cells maintain stable neighbour relationships.
MicroRNAs can promote translation of specific mRNAs in quiescent (G0) mammalian cells and immature Xenopus laevis oocytes. We report that microRNA-mediated upregulation of target mRNAs in oocytes is dependent on nuclear entry of the microRNA; cytoplasmically-injected microRNA repress target mRNAs. Components of the activation microRNP, AGO, FXR1 (FXR1-iso-a) and miR16 are present in the nucleus and cytoplasm. Importantly, microRNA target mRNAs for upregulation, Myt1, TNFα and a reporter bearing the TNFα AU-rich, microRNA target sequence, are associated with AGO in immature oocyte nuclei and AGO2 in G0 human nuclei, respectively. mRNAs that are repressed or lack target sites are not associated with nuclear AGO. Crosslinking-coupled immunopurification revealed greater association of AGO2 with FXR1 in the nucleus compared to cytoplasm. Consistently, overexpression of FXR1-iso-a rescues activation of cytoplasmically-injected RNAs and in low density, proliferating cells. These data indicate the importance of a compartmentalized AGO2-FXR1-iso-a complex for selective recruitment for microRNA-mediated upregulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.