Testing hypotheses of neuromuscular function during locomotion ideally requires the ability to record cellular responses and to stimulate the cells being investigated to observe downstream behaviors [1]. The inability to stimulate in free flight has been a long-standing hurdle for insect flight studies. The miniaturization of computation and communication technologies has delivered ultra-small, radio-enabled neuromuscular recorders and stimulators for untethered insects [2-8]. Published stimulation targets include the areas in brain potentially responsible for pattern generation in locomotion [5], the nerve chord for abdominal flexion [9], antennal muscles [2, 10], and the flight muscles (or their excitatory junctions) [7, 11-13]. However, neither fine nor graded control of turning has been demonstrated in free flight, and responses to the stimulation vary widely [2, 5, 7, 9]. Technological limitations have precluded hypotheses of function validation requiring exogenous stimulation during flight. We investigated the role of a muscle involved in wing articulation during flight in a coleopteran. We set out to identify muscles whose stimulation produced a graded turning in free flight, a feat that would enable fine steering control not previously demonstrated. We anticipated that gradation might arise either as a function of the phase of muscle firing relative to the wing stroke (as in the classic fly b1 muscle [14, 15] or the dorsal longitudinal and ventral muscles of moth [16]), or due to regulated tonic control, in which phase-independent summation of twitch responses produces varying amounts of force delivered to the wing linkages [15, 17, 18].
One of the best-known dichotomies in neuroscience is the division of neurons in the mammalian primary visual cortex into simple and complex cells. Simple cells have receptive fields with separate on and off subregions and give phase-sensitive responses to moving gratings, whereas complex cells have uniform receptive fields and are phase invariant. The phase sensitivity of a cell is calculated as the ratio of the first Fourier coefficient (F1) to the mean time-average (Fo) of the response to moving sinusoidal gratings at 100% contrast. Cells are then classified as simple (F1/Fo >1) or complex (F1/Fo <1). We manipulated cell responses by changing the stimulus contrast or through adaptation. The F(1)/F(0) ratios of cells defined as complex at 100% contrast increased at low contrasts and following adaptation. Conversely, the F1/Fo ratios remained constant for cells defined as simple at 100% contrast. The latter cell type was primarily located in thalamorecipient layers 4 and 6. Many cells initially classified as complex exhibit F1/Fo >1 at low contrasts and after adaptation (particularly in layer 4). The results are consistent with the spike-threshold hypothesis, which suggests that the division of cells into two types arises from the nonlinear interaction of spike threshold with membrane potential responses.
Adult dragonflies augment their compound eyes with three simple eyes known as the dorsal ocelli. While the ocellar system is known to mediate stabilizing head reflexes during flight, the ability of the ocellar retina to dynamically resolve the environment is unknown. For the first time, we directly measured the angular sensitivities of the photoreceptors of the dragonfly median (middle) ocellus. We performed a second-order Wiener Kernel analysis of intracellular recordings of light-adapted photoreceptors. These were stimulated with one-dimensional horizontal or vertical patterns of concurrent UV and green light with different contrast levels and at different ambient temperatures. The photoreceptors were found to have anisotropic receptive fields with vertical and horizontal acceptance angles of 15° and 28°, respectively. The first-order (linear) temporal kernels contained significant undershoots whose amplitudes are invariant under changes in the contrast of the stimulus but significantly reduced at higher temperatures. The second-order kernels showed evidence of two distinct nonlinear components: a fast acting self-facilitation, which is dominant in the UV, followed by delayed self- and cross-inhibition of UV and green light responses. No facilitatory interactions between the UV and green light were found, indicating that facilitation of the green and UV responses occurs in isolated compartments. Inhibition between UV and green stimuli was present, indicating that inhibition occurs at a common point in the UV and green response pathways. We present a nonlinear cascade model (NLN) with initial stages consisting of separate UV and green pathways. Each pathway contains a fast facilitating nonlinearity coupled to a linear response. The linear response is described by an extended log-normal model, accounting for the phasic component. The final nonlinearity is composed of self-inhibition in the UV and green pathways and inhibition between these pathways. The model can largely predict the response of the photoreceptors to UV and green light.
We study the extent to which the lateral ocelli of dragonflies are able to resolve and map spatial information, following the recent finding that the median ocellus is adapted for spatial resolution around the horizon. Physiological optics are investigated by the hanging-drop technique and related to morphology as determined by sectioning and three-dimensional reconstruction. L-neuron morphology and physiology are investigated by intracellular electrophysiology, white noise analysis and iontophoretic dye injection. The lateral ocellar lens consists of a strongly curved outer surface, and two distinct inner surfaces that separate the retina into dorsal and ventral components. The focal plane lies within the dorsal retina but proximal to the ventral retina. Three identified L-neurons innervate the dorsal retina and extend the one-dimensional mapping arrangement of median ocellar L-neurons, with fields of view that are directed at the horizon. One further L-neuron innervates the ventral retina and is adapted for wide-field intensity summation. In both median and lateral ocelli, a distinct subclass of descending L-neuron carries multi-sensory information via graded and regenerative potentials. Dragonfly ocelli are adapted for high sensitivity as well as a modicum of resolution, especially in elevation, suggesting a role for attitude stabilisation by localization of the horizon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.