A Gram-positive, spore-forming bacillus was isolated from a sample taken from an approximately 2000-year-old shaft-tomb located in the Mexican state of Jalisco, near the city of Tequila. Tentative identification using conventional biochemical analysis consistently identified the isolate as Bacillus subtilis. DNA isolated from the tomb isolate, strain 10b T , and closely related species was used to amplify a Bacillus-specific portion of the highly conserved 16S rRNA gene and an internal region of the superoxide dismutase gene (sodA int). Trees derived from maximum-likelihood methods applied to the sodA int sequences yielded non-zero branch lengths between strain 10b T and its closest relative, whereas a comparison of a Bacillus-specific 546 bp amplicon of the 16S rRNA gene demonstrated 99 % similarity with B. subtilis. Although the 16S rRNA gene sequences of strain 10b T and B. subtilis were 99 % similar, PFGE of NotI-digested DNA of strain 10b T revealed a restriction profile that was considerably different from those of B. subtilis and other closely related species. Whereas qualitative differences in whole-cell fatty acids were not observed, significant quantitative differences were found to exist between strain 10b T and each of the other closely related Bacillus species examined. In addition, DNA-DNA hybridization studies demonstrated that strain 10b T had a relatedness value of less than 70 % with B. subtilis and other closely related species. Evidence from the sodA int sequences, whole-cell fatty acid profiles and PFGE analysis, together with results from DNA-DNA hybridization studies, justify the classification of strain 10b T as representing a distinct species, for which the name Bacillus tequilensis sp. nov. is proposed. The type strain is 10b T (=ATCC BAA-819 T =NCTC 13306 T).
Androgens such as dihydrotestosterone (DHT) are known to exert their effects through the activation of intracellular receptors that regulate the transcription of target genes. Alternatively, nongenomic mechanisms, including the activation of such signaling pathways as the MAPK pathways, have been described. It is unclear, however, whether this latter mechanism of action is mediated by the classical androgen receptor (AR) or some alternative mechanism. In this study, using a glial cell model (C6 cells) that we found to express the AR, we identified that DHT increased the phosphorylation of both ERK and Akt, key effectors of the neuroprotection-associated MAPK and phosphoinositide 3-kinase signaling pathways, respectively, and ERK phosphorylation was blocked by the AR antagonist, flutamide. In contrast, the membrane-impermeable, BSA-conjugated androgen (DHT-BSA) caused a dose-dependent suppression of ERK and Akt phosphorylation, suggesting the existence of a novel membrane-associated AR that mediates this opposite effect on neuroprotective signaling. This is also supported by the observation of DHT-displaceable binding sites on the cell surface of live C6 cells. Collectively, these data support the existence of a novel membrane-associated AR in glial cells and argue for the existence of two, potentially competing, pathways in a given cell or tissue. This mutual antagonism was supported by the ability of DHT-BSA to attenuate DHT-induced ERK phosphorylation. Thus, depending on the predominance of one receptor mechanism over another, the outcome of androgen treatment may be very different and, as such, could help explain existing discrepancies as to whether androgens are protective or damage inducing.
In the central nervous system, androgens can exert either protective or damage-promoting effects. For example, testosterone protects neurons against beta-amyloid toxicity, whereas in other studies, testosterone exacerbated stroke-induced lesion size. The mechanism underlying this duality of androgens is still unclear. Recently, our laboratory reported that androgens elicit opposite effects on the ERK/MAPK and Akt signaling pathways, depending on whether a membrane androgen receptor (AR) or intracellular AR was activated. By extension, we hypothesized that androgens may affect cell viability differently depending on which receptor is activated. Here, we found that dihydrotestosterone (DHT) protected primary cortical astrocytes from the metabolic and oxidative insult associated with iodoacetic acid-induced toxicity, whereas DHT-BSA, a cell impermeable analog of DHT that preferentially targets the membrane AR, suppressed Akt signaling, increased caspase 3/7 activity, and enhanced iodoacetic acid-induced cell death. Interestingly, DHT-BSA also blocked the protective effects of DHT and estradiol. Collectively, these data support the existence of two, potentially competing, pathways for androgens in a given cell or tissue that may provide insight into the controversy of whether androgen therapy is beneficial or detrimental.
Resveratrol given acutely after TBI results in a decrease in neuroinflammation. These results suggest that resveratrol may be beneficial in reducing secondary brain injury after experiencing a mild TBI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.