Exposure of blood plasma/serum (P/S) to thawed conditions (> −30 °C) can produce biomolecular changes that skew measurements of biomarkers within archived patient samples, potentially rendering them unfit for molecular analysis. Because freeze-thaw histories are often poorly documented, objective methods for assessing molecular fitness before analysis are needed. We report a 10-μl, dilute-and-shoot, intact-protein mass spectrometric assay of albumin proteoforms called “ΔS-Cys-Albumin” that quantifies cumulative exposure of archived P/S samples to thawed conditions. The relative abundance of S-cysteinylated (oxidized) albumin in P/S increases inexorably but to a maximum value under 100% when samples are exposed to temperatures > −30 °C. The difference in the relative abundance of S-cysteinylated albumin (S-Cys-Alb) before and after an intentional incubation period that drives this proteoform to its maximum level is denoted as ΔS-Cys-Albumin. ΔS-Cys-Albumin in fully expired samples is zero. The range (mean ± 95% CI) observed for ΔS-Cys-Albumin in fresh cardiac patient P/S (n = 97) was, for plasma 12–29% (20.9 ± 0.75%) and for serum 10–24% (15.5 ± 0.64%). The multireaction rate law that governs S-Cys-Alb formation in P/S was determined and shown to predict the rate of formation of S-Cys-Alb in plasma and serum samples—a step that enables back-calculation of the time at which unknown P/S specimens have been exposed to room temperature. A blind challenge demonstrated that ΔS-Cys-Albumin can detect exposure of groups (n = 6 each) of P/S samples to 23 °C for 2 h, 4 °C for 16 h, or −20 °C for 24 h—and exposure of individual specimens for modestly increased times. An unplanned case study of nominally pristine serum samples collected under NIH-sponsorship demonstrated that empirical evidence is required to ensure accurate knowledge of archived P/S biospecimen storage history.
Genetically encoded fluorescent noncanonical amino acids (fNCAAs) could be used to develop novel fluorescent sensors of protein function. Previous efforts toward this goal have been limited by the lack of extensive physicochemical and structural characterizations of protein-based sensors containing fNCAAs. Here, we report the steady-state spectroscopic properties and first structural analyses of an fNCAA-containing Fab fragment of the 5c8 antibody, which binds human CD40L. A previously reported 5c8 variant in which the light chain residue Ile L 98 is replaced with the fNCAA L-(7-hydroxycoumarin-4-yl)ethylglycine (7-HCAA), exhibits a 1.7-fold increase in fluorescence upon antigen binding. Determination and comparison of the apparent pK a s of 7-HCAA in the unbound and bound forms indicate that the observed increase in fluorescence is not the result of perturbations in pK a . Crystal structures of the fNCAA-containing Fab in the apo and bound forms reveal interactions between the 7-HCAA side chain and surrounding residues that are
Ex vivo protein modifications occur within plasma and serum (P/S) samples due to prolonged exposure to the thawed state—which includes temperatures above −30 °C. Herein, the ex vivo glycation of human serum albumin from healthy and diabetic subjects was monitored in P/S samples stored for hours to months at −80 °C, −20 °C, and room temperature, as well as in samples subjected to multiple freeze-thaw cycles, incubated at different surface area-to-volume ratios or under different atmospheric compositions. A simple dilute-and-shoot method utilizing trap-and-elute LC-ESI-MS was employed to determine the relative abundances of the glycated forms of albumin—including forms of albumin bearing more than one glucose molecule. Significant increases in glycated albumin were found to occur within hours at room temperature, and within days at −20 °C. These increases continued over a period of 1–2 weeks at room temperature and over 200 days at −20 °C, ultimately resulting in a doubling of glycated albumin in both healthy and diabetic patients. It was also shown that samples stored at lower surface area-to-volume ratios or incubated under a nitrogen atmosphere experienced less rapid glucose adduction of albumin—suggesting a role for oxidative glycation in the ex vivo glycation of albumin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.