A comparison of the concentration of the total suspended particulate (TSP) matter measured by the tapered element oscillating microbalance (TEOM) monitor and the isokinetic TSP samplers developed at the University of Illinois was carried out in several types of confinement livestock buildings. In a majority of the measurements done, the dust concentration measured by the TEOM monitor was lower than the University of Illinois at Urbana-Champaign (UIUC) isokinetic TSP sampler; the TEOM monitor tended to underestimate the total dust concentration by as much as 54%. The difference in measurements can be attributed to the sampling efficiency of the TEOM monitor sampling head and the loss of some semivolatile compounds and particle-bound water because of heating of the TEOM monitor sampling stream to 50°C. Although several articles in the literature supported the latter argument, this study did not investigate the effect of heating the sampling stream or the effect of moisture on the relative difference in dust concentration measurements. The model that best describes the relationship between the two methods was site specific, that is, the linear regression model was applicable only to four of the sites monitored. The measured total dust concentration in livestock buildings range from ϳ300 to 4000 g/m 3 ; a higher correlation coefficient between TEOM-TSP and UIUC-TSP monitors was obtained in swine facilities than those obtained in a laying facility.
A six-state USDA-IFAFS funded research project (Aerial Pollutant Emissions from Confined Animal Buildings, APECAB) was conducted with the purpose of determining hydrogen sulfide, ammonia, PM10, and odor emission rates from selected swine and poultry housing systems. An important aspect of emission studies is to be able to measure the mass flow rate of air through the housing system. For this research project, the decision was made to study only fan ventilated buildings due to the difficulty in estimating mass flow rates through naturally ventilated buildings. This paper highlights the various techniques used throughout the study to determine mass flow rate through fan ventilated swine and poultry housing systems.
AbstractA six-state USDA-IFAFS funded research project (Aerial Pollutant Emissions from Confined Animal Buildings, APECAB) was conducted with the purpose of determining hydrogen sulfide, ammonia, PM10, and odor emission rates from selected swine and poultry housing systems. An important aspect of emission studies is to be able to measure the mass flow rate of air through the housing system. For this research project, the decision was made to study only fan ventilated buildings due to the difficulty in estimating mass flow rates through naturally ventilated buildings. This paper highlights the various techniques used throughout the study to determine mass flow rate through fan ventilated swine and poultry housing systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.