As a result of resonant scatterings off hydrogen atoms, Lyα emission from star-forming galaxies provides a probe of the (hardly isotropic) neutral gas environment around them. We study the effect of the environmental anisotropy on the observed Lyα emission by performing radiative transfer calculations for models of neutral hydrogen clouds with prescriptions of spatial and kinematic anisotropies. The environmental anisotropy leads to corresponding anisotropy in the Lyα flux and spectral properties and induces correlations among them. The Lyα flux (or observed luminosity) depends on the viewing angle and shows an approximate correlation with the initial Lyα optical depth in the viewing direction relative to those in all other directions. The distribution of Lyα flux from a set of randomly oriented clouds is skewed to high values, providing a natural contribution to the Lyα equivalent width (EW) distribution seen in observation. A narrower EW distribution is found at a larger peak offset of the Lyα line, similar to the trend suggested in observation. The peak offset appears to correlate with the line shape (full width at half maximum and asymmetry), pointing to a possibility of using Lyα line features alone to determine the systemic redshifts of galaxies. The study suggests that anisotropies in the spatial and kinematic distributions of neutral hydrogen can be an important ingredient in shaping the observed properties of Lyα emission from star-forming galaxies. We discuss the implications of using Lyα emission to probe the circumgalactic and intergalactic environments of galaxies.
We calculate the distance-dependent performance of a few representative terrestrial neutrino detectors in detecting and measuring the properties of the ν e breakout burst light curve in a Galactic core-collapse supernova. The breakout burst is a signature phenomenon of core collapse and offers a probe into the stellar core through collapse and bounce. We examine cases of no neutrino oscillations and oscillations due to normal and inverted neutrinomass hierarchies. For the normal hierarchy, other neutrino flavors emitted by the supernova overwhelm the ν e signal, making a detection of the breakout burst difficult. For the inverted hierarchy (IH), some detectors at some distances should be able to see the ν e breakout burst peak and measure its properties. For the IH, the maximum luminosity of the breakout burst can be measured at 10 kpc to accuracies of ∼30% for Hyper-Kamiokande (Hyper-K) and ∼60% for the Deep Underground Neutrino Experiment (DUNE). Super-Kamiokande (Super-K) and Jiangmen Underground Neutrino Observatory (JUNO) lack the mass needed to make an accurate measurement. For the IH, the time of the maximum luminosity of the breakout burst can be measured in Hyper-K to an accuracy of ∼3 ms at 7 kpc, in DUNE to ∼2 ms at 4 kpc, and JUNO and Super-K can measure the time of maximum luminosity to an accuracy of ∼2 ms at 1 kpc. Detector backgrounds in IceCube render a measurement of the ν e breakout burst unlikely. For the IH, a measurement of the maximum luminosity of the breakout burst could be used to differentiate between nuclear equations of state.
Collisional fragmentation is shown to not be a barrier to rocky planet formation at small distances from the host star. Simple analytic arguments demonstrate that rocky planet formation via collisions of homogeneous gravity-dominated bodies is possible down to distances of order the Roche radius (r Roche ). Extensive N-body simulations with initial bodies 1700 km that include plausible models for fragmentation and merging of gravity-dominated bodies confirm this conclusion and demonstrate that rocky planet formation is possible down to ∼1.1 r Roche . At smaller distances, tidal effects cause collisions to be too fragmenting to allow mass build-up to a final, dynamically stable planetary system. We argue that even differentiated bodies can accumulate to form planets at distances that are not much larger than r Roche .
We extract light curves for 4554 objects with 9
The relative rarity of giant planets around low-mass stars compared with solar-type stars is a key prediction from the core-accretion planet formation theory. In this paper we report on the discovery of four gas giant planets that transit low-mass late K and early M dwarfs. The planets HATS-74Ab (TOI 737b), HATS-75b (TOI 552b), HATS-76b (TOI 555b), and HATS-77b (TOI 730b) were all discovered from the HATSouth photometric survey and follow-up using TESS and other photometric facilities. We use the new ESPRESSO facility at the VLT to confirm systems and measure their masses. We find that these planets have masses of 1.46 ± 0.14 MJ, 0.491 ± 0.039 MJ, 2.629 ± 0.089 MJ, and 1.374 − 0.074 + 0.100 MJ, respectively, and radii of 1.032 ± 0.021 RJ, 0.884 ± 0.013 RJ, 1.079 ± 0.031 RJ, and 1.165 ± 0.021 RJ, respectively. The planets all orbit close to their host stars with orbital periods ranging from 1.7319 days to 3.0876 days. With further work, we aim to test core-accretion theory by using these and further discoveries to quantify the occurrence rate of giant planets around low-mass host stars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.