Academic performance is a topic studied not only to identify those students who could drop out of their studies, but also to classify them according to the type of academic risk they could find themselves. An application has been implemented that uses academic information provided by the university and generates classification models from three different algorithms: artificial neural networks, ID3 and C4.5. The models created use a set of variables and criteria for their construction and can be used to classify student desertion and more specifically to predict their type of academic risk. The performance of these models was compared to define the one that provided the best results and that will serve to make the classification of students. Decision tree algorithms, C4.5 and ID3, presented better measurements with respect to the artificial neural network. The tree generated using the C4.5 algorithm presented the best performance metrics with correctness, accuracy, and sensitivity equal to 0.83, 0.87, and 0.90 respectively. As a result of the classification to determine student desertion it was concluded, according to the model generated using the C4.5 algorithm, that the ratio of credits approved by a student to the credits that he should have taken is the variable more significant. The classification, depending on the type of academic risk, generated a tree model indicating that the number of abandoned subjects is the most significant variable. The admission scan modality through which the student entered the university did not turn out to be significant, as it does not appear in the generated decision tree.
La deserción universitaria es un problema relacionado con el estudiante, como responsable directo, y con la institución universitaria, conocer las posibilidades de deserción es relevante para la institución. En este trabajo se propone utilizar modelos de clasificación para encontrar patrones y predecir posibles casos de deserción en estudiantes universitarios. Se ha implementado una aplicación que utiliza información proporcionada por la universidad y que genera modelos de clasificación a partir de diferentes algoritmos (redes neuronales, ID3, C4.5), y utiliza los atributos más significativos dentro de la información disponible. Se comparó el rendimiento de estos modelos para definir aquel que aportaba mejores resultados y que servirá para realizar la clasificación de los estudiantes. Los resultados muestran que el algoritmo de C4.5 presentó mejoras medidas de rendimiento con respecto a la red neuronal y al ID3 y que la relación de créditos aprobados por un estudiante con respecto a los créditos que debería haber llevado es la variable más significativa en la construcción del modelo, seguida por las calificaciones, mientras que, la modalidad de examen de admisión mediante la cual el estudiante ingresó a la universidad no resultó ser significativa, pues no aparece en el árbol de decisión generado.Palabras clave: Minería de datos educativos, algoritmo ID3, algoritmo C4.5, red neuronal artificial, algoritmos de clasificación, deserción estudiantil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.