CTR1 is preferentially expressed by a subset of DRG neurons that are particularly vulnerable to the toxicity of platinum drugs. These findings, together with its neuronal membrane localization, are suggestive of CTR1-related mechanisms of platinum drug neuronal uptake and neurotoxicity.
BackgroundOxaliplatin and related chemotherapeutic drugs cause painful chronic peripheral neuropathies in cancer patients. We investigated changes in neuronal size profiles and neurofilament immunoreactivity in L5 dorsal root ganglion (DRG) tissue of adult female Wistar rats after multiple-dose treatment with oxaliplatin, cisplatin, carboplatin or paclitaxel.ResultsAfter treatment with oxaliplatin, phosphorylated neurofilament heavy subunit (pNF-H) immunoreactivity was reduced in neuronal cell bodies, but unchanged in nerve fibres, of the L5 DRG. Morphometric analysis confirmed significant changes in the number (-75%; P < 0.0002) and size (-45%; P < 0.0001) of pNF-H-immunoreactive neurons after oxaliplatin treatment. pNF-H-immunoreactive neurons had overlapping size profiles and co-localisation with neurons displaying cell body immunoreactivity for parvalbumin, non-phospho-specific neurofilament medium subunit (NF-M) and non-phospho-specific neurofilament heavy subunit (NF-H), in control DRG. However, there were no significant changes in the numbers of neurons with immunoreactivity for parvalbumin (4.6%, P = 0.82), NF-M (-1%, P = 0.96) or NF-H (0%; P = 0.93) after oxaliplatin treatment, although the sizes of parvalbumin (-29%, P = 0.047), NF-M (-11%, P = 0.038) and NF-H (-28%; P = 0.0033) immunoreactive neurons were reduced. In an independent comparison of different chemotherapeutic agents, the number of pNF-H-immunoreactive neurons was significantly altered by oxaliplatin (-77.2%; P < 0.0001) and cisplatin (-35.2%; P = 0.03) but not by carboplatin or paclitaxel, and their mean cell body area was significantly changed by oxaliplatin (-31.1%; P = 0.008) but not by cisplatin, carboplatin or paclitaxel.ConclusionThis study has demonstrated a specific pattern of loss of pNF-H immunoreactivity in rat DRG tissue that corresponds with the relative neurotoxicity of oxaliplatin, cisplatin and carboplatin. Loss of pNF-H may be mechanistically linked to oxaliplatin-induced neuronal atrophy, and serves as a readily measureable endpoint of its neurotoxicity in the rat model.
Mogamulizumab (Poteligeo®) is a defucosylated, humanized monoclonal antibody targeting CC chemokine receptor 4 (CCR4). Development is being carried out by its owner Kyowa Hakko Kirin for various haematological malignancies, and by licensee Amgen for asthma. Mogamulizumab was conceived through Kyowa Hakko Kirin's Potelligent® technology, which produces antibodies with enhanced antibody-dependent cellular cytotoxicity. This is achieved largely by reducing fucose content in the oligosaccharide structure of the Fc region. Mogamulizumab has been approved in Japan for the treatment of relapsed or refractory adult T-cell leukaemia-lymphoma (ATL) and is the first Potelligent® antibody to receive marketing approval anywhere in the world. Phase II development is underway for adult T-cell leukaemia-lymphoma (ATL) and cutaneous T-cell lymphoma in the US, and for peripheral T-cell lymphoma in the US and Europe. Amgen is conducting a phase I US-based study in patients with asthma. This article summarizes the milestones in the development of intravenous mogamulizumab leading to this first approval.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.