Non-viral gene delivery systems capable of transfecting cells in the brain are critical in realizing the potential impact of nucleic acid therapeutics for diseases of the central nervous system. In this study, the membrane-lytic peptide melittin was incorporated into block copolymers synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. The first block, designed for melittin conjugation, was composed of N-(2-hydroxypropyl)methacrylamide (HPMA) and pyridyl disulfide methacrylamide (PDSMA) and the second block, designed for DNA binding, was composed of oligo-L-lysine (K10) and HPMA. Melittin modified with cysteine at the C-terminus was conjugated to the polymers through the pyridyl disulfide pendant groups via disulfide exchange. The resulting pHgMelbHK10 copolymers are more membrane-lytic than melittin-free control polymers, and efficiently condensed plasmid DNA into salt-stable particles (~ 100–200 nm). The melittin-modified polymers transfected both HeLa and neuron-like PC-12 cells more efficiently than melittin-free polymers although toxicity associated with the melittin peptide was observed. Optimized formulations containing the luciferase reporter gene were delivered to mouse brain by intraventricular brain injections. Melittin-containing polyplexes produced about 35-fold higher luciferase activity in the brain compared to polyplexes without melittin. Thus, the melittin-containing block copolymers described in this work are promising materials for gene delivery to the brain.
A continuous suprascapular block may be a useful analgesic alternative to the interscalene or supraclavicular approaches when the preservation of lung function is a priority after shoulder replacement surgery.
The architecture of polycation gene carriers has been shown to affect both their transfection efficiency and cytotoxicity. This work reports the synthesis of cyclic polycations and their use for gene transfer to mammalian cells. Cyclic poly((2-dimethylamino) ethylmethacrylate) (pDMAEMA) homopolymers of various molecular weights were synthesized by "intrachain"click cyclization of α-alkyne-ω-azide heterodifunctional linear precursors prepared by atom transfer radical polymerization (ATRP). Polymers were characterized by size exclusion chromatography and FT-IR analyses to confirm efficient cyclization and products with low polydispersity. Cyclic polymers formed more compact particles with plasmid DNA compared to linear analogues. Cellular uptake, membrane disruption, and nucleic acid delivery efficiency were determined for all polymers. In general, cyclic polymers complexed and delivered nucleic acids with efficiencies similar to their linear counterparts. Notably, cyclic polymers were less cytotoxic than linear polymers due to reduced membrane disruption and are therefore promising alternative structures for biological applications.
Polyethylenimine (PEI) is one of the most broadly used polycations for gene delivery due to its high transfection efficiency and commercial availability but materials are cytotoxic and often polydisperse. The goal of current work is to develop an alternative family of polycations based on controlled living radical polymerization (CLRP) and to optimize the polymer structure for efficient gene delivery. In this study, well-defined poly(glycidyl methacrylate)(P(GMA)) homopolymers were synthesized using reversible addition fragmentation chain transfer (RAFT) polymerization followed by decoration using three different types of oligoamines, i.e., tetraethylenepentamine (TEPA), pentaethylenehexamine (PEHA), and tris(2-aminoethyl)amine (TREN), respectively, to generate various P(GMA-oligoamine) homopolycations. The effect of P(GMA) backbone length and structure of oligoamine on gene transfer efficiency was then determined. The optimal polymer, P(GMA-TEPA)50, provided comparable transfection efficiency but lower cytotoxicity than PEI. P(GMA-TEPA)50 was then used as the cationic block in di-block copolymers containing hydrophilic N-(2-hydroxypropyl) methacrylamide (HPMA) and oligo(ethylene glycol) monomethyl ether methacrylate (OEGMA). Polyplexes of block copolymers were stable against aggregation in physiological salt condition and in Opti-MEM due to the shielding effect of P(HPMA) and P(OEGMA). However, the presence of the HPMA/OEGMA block significantly decreased the transfection efficacy of P(GMA-TEPA)50homopolycation. To compensate for reduced cell uptake caused by the hydrophilic shell of polyplex, the integrin-binding peptide, RGD, was conjugated to the hydrophilic chain end of P(OEGMA)15-b-P(GMA-TEPA)50 copolymer by Michael-type addition reaction. At low polymer to DNA ratios, the RGD-functionalized polymer showed increased gene delivery efficiency to HeLa cells compared to analogous polymers lacking RGD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.