All organisms store the information necessary to maintain life in their DNA. Any process that damages DNA, causing a loss or corruption of that information, jeopardizes the viability of the organism. One-electron oxidation is such a process. In this Account, we address three of the central features of one-electron oxidation of DNA: (i) the migration of the radical cation away from the site of its formation; (ii) the electronic and structural factors that determine the nucleobases at which irreversible reactions most readily occur; (iii) the mechanism of reaction for nucleobase radical cations. The loss of an electron (ionization) from DNA generates an electron "hole" (a radical cation), located most often on its nucleobases, that migrates reversibly through duplex DNA by hopping until it is trapped in an irreversible chemical reaction. The particular sequence of nucleobases in a DNA oligomer determines both the efficiency of hopping and the specific location and nature of the damaging chemical reaction. In aqueous solution, DNA is a polyanion because of the negative charge carried by its phosphate groups. Counterions to the phosphate groups (typically Na(+)) play an important role in facilitating both hopping and the eventual reaction of the radical cation with H(2)O. Irreversible reaction of a radical cation with H(2)O in duplex DNA occurs preferentially at the most reactive site. In normal DNA, comprising the four common DNA nucleobases G, C, A, and T, reaction occurs most commonly at a guanine, resulting in its conversion primarily to 8-oxo-7,8-dihydroguanine (8-OxoG). Both electronic and steric effects control the outcome of this process. If the DNA oligomer does not contain a suitable guanine, then reaction of the radical cation occurs at the thymine of a TT step, primarily by a tandem process. The oxidative damage of DNA is a complex process, influenced by charge transport and reactions that are controlled by a combination of enthalpic, entropic, steric, and compositional factors. These processes occur over a broad distribution of energies, times, and spatial scales. The emergence of a complete picture of DNA oxidation will require additional exploration of the structural, kinetic, and dynamic properties of DNA, but this Account offers insight into key elements of this challenge.
The one-electron oxidation of a series of DNA oligonucleotides was examined. Each oligomer contains a covalently linked anthraquinone (AQ) group. Irradiation of the AQ group with near-UV light results in a one-electron oxidation of the DNA that generates a radical cation (electron "hole"). The radical cation migrates through the DNA by a hopping mechanism and is trapped by reaction with water or molecular oxygen, which results in chemical reaction at particular nucleobases. This reaction is revealed as strand cleavage when the irradiated oligonucleotide is treated with piperidine. The specific oligomers examined reveal the existence of three categories of nucleobase sequences: charge shuttles, charge traps, and barriers to charge migration. The characterization of a sequence is not independent of the identity of other sequences in the oligonucleotide, and for this reason, the function of a particular sequence emerges from an analysis of the entire structure. Qualitative potential energy landscapes are introduced as a tool to assist in the rationalization and prediction of the reactions of nucleobases in oxidized DNA.
Four new N-ethylcarbazole-linked aza-boron-dipyrromethene (aza-BODIPY) dyes (8 a,b and 9 a,b) were synthesized and characterized. The presence of the N-ethylcarbazole moiety shifts their absorption and fluorescence spectra to the near-infrared region, λ≈650-730 nm, of the electromagnetic spectrum. These dyes possess strong molar absorptivity in the range of 3-4×10 m cm with low fluorescence quantum yields. The triplet excited state and singlet oxygen generation of these dyes were enhanced upon iodination at the core position. The core-iodinated dyes 9 a,b showed excellent triplet quantum yields of about 90 and 75 %, with singlet oxygen generation efficiency of about 70 and 60 % relative to that of the parent dyes. Derivatives 8 a,b showed dual absorption profiles, in contrast to dyes 9 a,b, which had the characteristic absorption band of aza-BODIPY dyes. DFT calculations revealed that the electron density was spread over the iodine and dipyrromethene plane of 9 a,b, whereas in 8 a,b the electron density was distributed on the carbazole group and dipyrromethene plane of aza-BODIPY. The uniqueness of these aza-BODIPY systems is that they exhibit efficient triplet-state quantum yields, high singlet oxygen generation yields, and good photostability. Furthermore, the photoacoustic (PA) characteristics of these aza-BODIPY dyes was explored, and efficient PA signals for 8 a were observed relative to blood serum with in vitro deep-tissue imaging, thereby confirming its use as a promising PA contrast agent.
A series of acridinium derivatives 1-6, wherein steric factors have been varied systematically through substitution at the 9 position of the acridine ring, have been synthesized and their DNA interactions have been investigated by various biophysical techniques. The unsubstituted and methylacridinium derivatives 1 and 2 and the o-tolylacridinium derivative 6 exhibited high fluorescence quantum yields (Phi(f)() congruent with 1) and lifetimes (tau = 35, 34, and 25 ns, respectively), when compared with the arylacridinium derivatives 3-5. The acridinium derivatives 1 and 2 showed high DNA binding affinity (K = 7.3-7.7 x 10(5) M(-)(1)), when compared to the arylacridinium derivatives 3-5 (K = 6.9-10 x 10(4) M(-)(1)). DNA melting and viscosity studies establish that in the case of the aryl-substituted systems, the efficiency of DNA binding is in the order, phenyl > p-tolyl > m-tolyl >>>> o-tolyl derivative. The increase in steric crowding around the acridine ring hinders the DNA binding interactions and thereby leads to negligible binding as observed in the case of 6 (o-tolyl derivative). These results indicate that a subtle variation in the substitution pattern has a profound influence on the photophysical and DNA interactions. Further, they demonstrate that pi-stacking interactions of the ligands with DNA are essential for efficient electron transfer between the DNA bases and the ligands. These water soluble and highly fluorescent molecules which differ in their DNA binding mode can act as models to study various DNA-ligand interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.