Antenatal betamethasone is used for accelerating fetal lung maturation for women at risk of preterm birth. Altered sperm parameters were reported in adult rats after intrauterine exposure to betamethasone. In this study, male rat offspring were assessed for reproductive development after dam exposure to betamethasone (0.1mg/kg) or vehicle on Days 12, 13, 18 and 19 of pregnancy. The treatment resulted in reduction in the offspring body weight, delay in preputial separation, decreased seminal vesicle weight, testosterone levels and fertility, and increased testicular weight. In the testis, morphologically abnormal seminiferous tubules were observed, characterized by an irregular cell distribution with Sertoli cell that were displaced towards the tubular lumen. These cells expressed both Connexin 43 (Cx43) and Proliferative Nuclear Cell Antigen (PCNA). In conclusion, intrauterine betamethasone treatment appears to promote reproductive programming and impairment of rat sexual development and fertility due to, at least in part, unusual testicular disorders.
Betamethasone is the drug of choice for antenatal treatment, promoting fetal lung maturation, decreasing the incidence of respiratory distress syndrome and neonatal mortality. Previous studies reported that prenatal treatment with this drug reduced testosterone levels, sperm quality and fertility in adult rats. We aimed to further evaluate the reproductive consequences of prenatal betamethasone exposure in male rats. Pregnant Wistar rats (n=13/group) were separated into two groups: control (vehicle) and betamethasone- treated (0.1mg/kg IM) and rats were injected on gestational days 12, 13, 18 and 19. Body weight, sexual behavior, reproductive organ weights, serum hormone levels, accessory glands contractility, sperm parameters, and fertility after in utero artificial insemination were evaluated. Our results showed that prenatal betamethasone exposure provoked a significant reduction in body weight at PND 01 and, at adulthood, decrease in FSH levels, sperm motility and production. Furthermore, seminal vesicle weight was decreased while testicular and ventral prostate weights were increased. Serum LH levels and the percentage of abnormal sperm were significantly increased. Although sexual behavior was not altered, a significant reduction in fertility in the adult rats exposed prenatally to betamethasone was noted. We concluded that prenatal betamethasone exposure leads to long-term reproductive impairment in male rats. These results may have important implications for humans, considering the use of this glucocorticoid in pregnant women.
Fipronil is an insecticide widely used in agriculture, veterinary medicine and public health that has recently been listed as a potential endocrine disrupter. In the present study we evaluated the effects of perinatal exposure to fipronil during the period of sexual brain differentiation and its later repercussions on reproductive parameters in male rats. Pregnant rats were exposed (via gavage) to fipronil (0.03, 0.3 or 3mgkg) from Gestational Day 15 until Postnatal Day 7. Fipronil exposure did not compromise the onset of puberty. In adulthood, there was no effect on organ weight or sperm production. Furthermore, there were no adverse effects on the number of Sertoli cells per seminiferous tubule, testicular and epididymal histomorphometry or histopathology or expression patterns of androgen receptor in the testis. Similarly, no changes were observed in the sexual behaviour or hormone levels. However, in rats exposed to fipronil, changes in sperm motility were observed, with a decrease in motile spermatozoa and an increase in non-mobile spermatozoa, which can compromise sperm quality in these rats. Perinatal exposure to fipronil has long-term effects on sperm parameters, and the epididymis can be a target organ. Additional studies should be undertaken to identify the mechanisms by which fipronil affects sperm motility.
Fipronil, a phenylpyrazole insecticide, is used in agriculture, veterinary medicine, and public health. Because this insecticide is considered a potential endocrine disruptor, the aim of this study was to examine the influence of perinatal exposure to fipronil on neonatal female reproductive system development. Pregnant rats were exposed (via gavage) daily to fipronil (0.03, 0.3, or 3 mg/kg) from gestational day 15 to day 7 after birth, and effects on the reproductive functions assessed on postnatal day (PND) 22. No signs of maternal toxicity were observed during daily treatment with fipronil. Perinatal exposure to the highest dose of fipronil (3 mg/kg) delayed the age of vaginal opening (VO) and first estrus without markedly affecting the anogenital distance (AGD). Further, exposure to 0.3 mg/kg fipronil produced a significantly shorter estrus cycle and reduced number of cycles during the period of evaluation. However, the other reproductive parameters analyzed, including fertility, hormone levels, sexual behavior, and histology of ovaries and uterus, displayed no marked alterations. In this experimental model, fipronil interfered with development of neonatal female reproductive system as evidenced by delay in VO and estrus cycle alterations without apparent significant effects on fertility. Further studies are needed to identify the mechanisms of action associated with the observed female reproductive system changes.
Excessive fetal glucocorticoid exposure has been linked to increased susceptibility to hypertension and cardiac diseases in the adult life, a process called fetal programming. The cardiac contribution to the hypertensive phenotype of glucocorticoid-programmed progeny is less known, therefore, we investigated in vitro cardiac functional parameters from rats exposed in utero to betamethasone. Pregnant Wistar rats received vehicle (VEH) or betamethasone (BET, 0.1mg/kg, i.m.) at gestational days 12, 13, 18 and 19. Male and female offspring were killed at post-natal day 30 and the right atrium (RA) was isolated to in vitro evaluation of drug-induced chronotropic responses. Additionally, whole hearts were retrograde-perfused in a Langendorff apparatus and infarct size in response to in vitro ischemia/reperfusion (I/R) protocol was evaluated. Male and female progeny from BET-exposed pregnant rats had reduced birth weight, a hallmark of fetal programming. Male BET-progeny had increased basal RA rate, impaired chronotropic responses to noradrenaline and adenosine, and increased myocardial damage to I/R. Though a 12-fold reduction in the negative chronotropic responses to adenosine, the effects of non-metabolisable adenosine receptor agonists 5'-(N-ethylcarboxamido)adenosine or 2-Chloro-adenosine were not different between VEH- and BET-exposed male rats. BET-exposed female offspring presented no cardiac dysfunction. Prenatal BET exposure engenders male-specific impairment of sinoatrial node function and on myocardial ischemia tolerance resulting, at least in part, from an increased adenosine metabolism in the heart. In light of the importance of adenosine in the cardiac physiology our results suggest a link between reduced adenosinergic signaling and the cardiac dysfunctions observed in glucocorticoid-induced fetal programming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.