Blockade of the renin-angiotensin system by inhibition of angiotensin-converting enzyme (ACE) is beneficial for the treatment of hypertension and congestive heart failure. However, it is unclear how complete the blockade by ACE inhibitors is and if there is continuing angiotensin II (Ang II) formation during chronic treatment with ACE inhibitors. Indeed chymase, a serine protease, which is able to form angiotensin II from angiotensin I (Ang I) and cannot be blocked by ACE inhibitors, has been shown to be present in human heart. The goal of the present study was to evaluate the extent of renin-angiotensin system blockade and the Ang II-forming pathways in cardiac tissue of patients chronically treated with ACE inhibitors or in patients without ACE inhibition therapy. Our studies indicate an incomplete ACE inhibition in human heart tissue after chronic ACE inhibitor therapy. Moreover, ACE contributes only a small portion to the total Ang I conversion, as shown in biochemical studies in ventricular and coronary homogenates or functionally as Ang I contractions in isolated rings of coronary arteries. A serine protease was responsible for the majority of Ang II production in both the membrane preparation and Ang I-induced contractions of isolated coronary arteries. In humans, the serine protease pathway is likely to play an important role in cardiac Ang II formation. Thus, drugs such as renin inhibitors and Ang II receptor blockers might be able to induce a more complete blockade of the renin-angiotensin system, providing a more efficacious therapy.
Starting from the structure of bosentan (1), we embarked on a medicinal chemistry program aiming at the identification of novel potent dual endothelin receptor antagonists with high oral efficacy. This led to the discovery of a novel series of alkyl sulfamide substituted pyrimidines. Among these, compound 17 (macitentan, ACT-064992) emerged as particularly interesting as it is a potent inhibitor of ET(A) with significant affinity for the ET(B) receptor and shows excellent pharmacokinetic properties and high in vivo efficacy in hypertensive Dahl salt-sensitive rats. Compound 17 successfully completed a long-term phase III clinical trial for pulmonary arterial hypertension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.