Whole genome sequencing (WGS) has become the new gold standard for bacterial outbreak investigation, due to the high resolution available for typing. While sequencing is currently predominantly performed on Illumina devices, the preceding library preparation can be performed using various protocols. Enzymatic fragmentation library preparation protocols are fast, have minimal hands-on time, and work with small quantities of DNA. The aim of our study was to compare three library preparation protocols for molecular typing: Nextera XT (Illumina); Nextera Flex (Illumina); and QIAseq FX (Qiagen). We selected 12 ATCC strains from human Gram-positive and Gram-negative pathogens with %G+C-content ranging from 27% ( Fusobacterium nucleatum ) to 73% ( Micrococcus luteus ), each having a high quality complete genome assembly available, to allow in-depth analysis of the resulting Illumina sequence data quality. Additionally, we selected isolates from previously analyzed cases of vancomycin-resistant Enterococcus faecium (VRE) ( n = 7) and a local outbreak of Klebsiella aerogenes ( n = 5). The number of protocol steps and time required were compared, in order to test the suitability for routine laboratory work. Data analyses were performed with standard tools commonly used in outbreak situations: Ridom SeqSphere+ for cgMLST; CLC genomics workbench for SNP analysis; and open source programs. Nextera Flex and QIAseq FX were found to be less sensitive than Nextera XT to variable %G+C-content, resulting in an almost uniform distribution of read-depth. Therefore, low coverage regions are reduced to a minimum resulting in a more complete representation of the genome. Thus, with these two protocols, more alleles were detected in the cgMLST analysis, producing a higher resolution of closely related isolates. Furthermore, they result in a more complete representation of accessory genes. In particular, the high data quality and relative simplicity of the workflow of Nextera Flex stood out in this comparison. This thorough comparison within an ISO/IEC 17025 accredited environment will be of interest to those aiming to optimize their clinical microbiological genome sequencing.
Worldwide outbreaks of enterovirus D68 (EV-D68) in 2014 and 2016 have caused serious respiratory and neurological disease. We collected samples from several European countries during the 2018 outbreak and determined 53 near full-length genome (‘whole genome’) sequences. These sequences were combined with 718 whole genome and 1,987 VP1-gene publicly available sequences. In 2018, circulating strains clustered into multiple subgroups in the B3 and A2 subclades, with different phylogenetic origins. Clusters in subclade B3 emerged from strains circulating primarily in the US and Europe in 2016, though some had deeper roots linking to Asian strains, while clusters in A2 traced back to strains detected in East Asia in 2015-2016. In 2018, all sequences from the USA formed a distinct subgroup, containing only three non-US samples. Alongside the varied origins of seasonal strains, we found that diversification of these variants begins up to 18 months prior to the first diagnostic detection during a EV-D68 season. EV-D68 displays strong signs of continuous antigenic evolution and all 2018 A2 strains had novel patterns in the putative neutralizing epitopes in the BC- and DE-loops. The pattern in the BC-loop of the USA B3 subgroup had not been detected on that continent before. Patients with EV-D68 in subclade A2 were significantly older than patients with a B3 subclade virus. In contrast to other subclades, the age distribution of A2 is distinctly bimodal and was found primarily among children and in the elderly. We hypothesize that EV-D68’s rapid evolution of surface proteins, extensive diversity, and high rate of geographic mixing could be explained by substantial reinfection of adults. Better understanding of evolution and immunity across diverse viral pathogens, including EV-D68 and SARS-CoV-2, is critical to pandemic preparedness in the future.
Background The clinical course of Campylobacter infection varies in symptoms and severity depending on host factors, virulence of the pathogen and initiated therapy. The type VI secretion system (T6SS) has been identified as a novel virulence factor, which mediates contact-dependent injection of enzymes and toxins into competing bacteria or host cells and facilitates the colonisation of a host organism. We aimed to compare the clinical course of Campylobacter infection caused by strains with and without the T6SS and identify possible associations between this putative virulence factor and the clinical manifestations of disease. Methods From April 2015 to January 2017, patients with detection of Campylobacter spp. were identified at the University Hospital of Basel and the University Children’s Hospital of Basel and included in this case-control study. Presence of the T6SS gene cluster was assayed by PCR targeting the hcp gene, confirmed with whole genome sequencing. Pertinent clinical data was collected by medical record review. Differences in disease- and host-characteristics between T6SS-positive (case) and –negative (control) were compared in a uni- and multi-variable analysis. Hospital admission, antibiotic therapy, admission to intensive care unit, development of bacteraemia and in-hospital mortality were considered as clinical endpoints. Results We identified 138 cases of Campylobacter jejuni infections and 18 cases of Campylobacter coli infections from a paediatric and adult population. Analyses were focused on adult patients with C. jejuni ( n = 119) of which 16.8% were T6SS-positive. Comparisons between T6SS-positive and -negative C. jejuni isolates did not reveal significant differences regarding clinical manifestations or course of disease. All clinical endpoints showed a similar distribution in both groups. A higher score in the Charlson Comorbidity Index was associated with T6SS-positive C. jejuni isolates ( p < 0.001) and patients were more likely to have a solid organ transplant and to be under immunosuppressive therapy. Conclusions Our study does not provide evidence that T6SS is associated with a more severe clinical course. Interestingly, T6SS-positive isolates are more commonly found in immunocompromised patients: an observation which merits further investigation. Electronic supplementary material The online version of this article (10.1186/s12879-019-3858-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.