Our results suggest that extracellular DNA in mucus play a role in lower airways obstruction in OVA asthma protocol and that the treatment with rhDNase improved lung function and DNA extracellular traps, with no direct cellular anti-inflammatory effects.
Studies have shown autophagy participation in the immunopathology of inflammatory diseases. However, autophagy role in asthma and in eosinophil extracellular traps (EETs) release is poorly understood. Here, we attempted to investigate the autophagy involvement in EETs release and in lung inflammation in an experimental asthma model. Mice were sensitized with ovalbumin (OVA), followed by OVA challenge.Before the challenge with OVA, mice were treated with an autophagy inhibitor, 3-methyladenine (3-MA). We showed that 3-MA treatment decreases the number of eosinophils, eosinophil peroxidase (EPO) activity, goblet cells hyperplasia, proinflammatory cytokines, and nuclear factor kappa B (NFκB) p65 immunocontent in the lung. Moreover, 3-MA was able to improve oxidative stress, mitochondrial energy metabolism, and Na + , K + -ATPase activity. We demonstrated that treatment with autophagy inhibitor 3-MA reduced EETs formation in the airway. On the basis of our results, 3-MA treatment can be an interesting alternative for reducing lung inflammation, oxidative stress, mitochondrial damage, and EETs formation in asthma.
K E Y W O R D Sasthma, autophagy, eosinophil extracellular traps, eosinophils, inflammation
In asthma, there are high levels of inflammatory mediators, reactive oxygen species (ROS), and eosinophil extracellular traps (EETs) formation in airway. Here, we attempted to investigate the ROS involvement in EETs release and airway inflammation in OVA-challenged mice. Before the intranasal challenge with ovalbumin (OVA), animals were treated with two ROS inhibitors, N-acetylcysteine (NAC) or diphenyleneiodonium (DPI). We showed that NAC treatment reduced inflammatory cells in lung. DPI and NAC treatments reduced eosinophil peroxidase (EPO), goblet cells hyperplasia, proinflammatory cytokines, NFκB p65 immunocontent, and oxidative stress in lung. However, only the NAC treatment improved mitochondrial energy metabolism. Moreover, the treatments with DPI and NAC reduced EETs release in airway. This is the first study to show that ROS are needed for EETs formation in asthma. Based on our results, NAC and DPI treatments can be an interesting alternative for reducing airway inflammation, mitochondrial damage, and EETs release in asthma. K E Y W O R D S diphenyleneiodonium, DNA extracellular traps, experimental asthma, N-acetylcysteine, oxidative stress
Asthma is associated with a loss of the structural integrity of airway epithelium and dysfunction of the physical barrier, which protects airways from external harmful factors. Granulocyte activation causes the formation of extracellular traps, releasing web-like structures of DNA and proteins, being important to kill pathogens extracellularly. We investigated whether eosinophils infiltrating airways in an experimental model of asthma would induce eosinophil extracellular traps (EETs) in bronchoalveolar lavage fluid and lung tissue. We showed that an ovalbumin (OVA) asthma protocol presented a significant increase in eosinophil counts with increased extracellular DNA in bronchoalveolar lavage fluid as well as in lung tissue, confirming the presence of DNA traps colocalized with eosinophil peroxidase. EETs formation was reversed by DNase treatment. With these approaches, we demonstrated for the first time that OVA-challenged mice release extracellular DNA traps, which could aggravate pulmonary dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.