We study the droplet-based synthesis of fluorescent silica nanoparticles (50-350 nm size) in a microfluidic chip. Fluorescein-isothiocyanate (FITC) dye is first chemically linked to aminopropyl triethoxysilane (APTES) in ethanol and this reaction product is subsequently mixed with tetraethyl orthosilicate (TEOS) to yield a fluorescent silicon alkoxide precursor solution. The latter reacts with an aqueous ethanol-ammonia hydrolysing mixture inside droplets, forming fluorescent silica nanoparticles. The droplets are obtained by pinching-off side-by-side flowing streams of alkoxide solution/hydrolysing mixture on a microfluidic chip using a Fluorinert oil continuous phase flow. Synthesis in droplets leads to a faster reaction and allows drastically improved nanoparticle size uniformity (down to 3% relative standard deviation for 350 nm size particles) when compared to conventional bulk synthesis methods, thanks to the precise control of reagent concentrations and reaction times offered by the microfluidic format. Incorporating FITC inside silica nanoparticles using our method leads to reduced dye leakage and increases the dye's stability, as evidenced by a reduced photochemical bleaching compared to a pure FITC solution.
The absorption of dietary calcium through the intestinal barrier is essential for maintaining health in general and especially of the bone system. We propose a microfluidic model that studies free calcium (Ca 2+ ) transport through a confluent monolayer of Caco-2 cells. The latter were cultured on a porous membrane that was positioned in between a top and bottom microfluidic chamber. Fresh cell culture medium was continuously supplied into the device at a flow rate of 5 nL s À1 and the culture progress of the cell monolayer was continuously monitored using integrated Transepithelial Electrical Resistance (TEER) electrodes. The electrical measurements showed that the Caco-2 monolayer formed a dense and tight barrier in 5 days. The transported free Ca 2+ from the top microfluidic chamber to the basolateral side of the cell monolayer was measured using the calcium-sensitive dye fura-2. This is a ratiometric dye which exhibits an excitation spectrum shift from 340 nm to 380 nm, when it binds to Ca 2+ with an emission peak at 510 nm. Therefore, the concentration of free Ca 2+ is proportional to the ratio of fluorescence emissions obtained by exciting at 340 nm and 380 nm. The barrier function of the cell monolayer was evaluated by a measured rate of Ca 2+ transport through the monolayer that was 5 times lower than that through the bare porous membrane. The continuous perfusion of cell nutrients and the resultant mechanical shear on the cell surface due to the fluid flow are two key factors that would narrow the gap between the in vivo and in vitro conditions. These conditions significantly enhance the Caco-2 cell culture model for studying nutrients bioavailability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.