The CB2 receptor is an attractive therapeutic target for analgesic and anti-inflammatory agents. Herein we describe the discovery of a novel class of oxadiazole derivatives from which potent and selective CB2 agonist leads were developed. Initial hit 7 was identified from a cannabinoid target-biased library generated by virtual screening of sample collections using a pharmacophore model in combination with a series of physicochemical filters. 7 was demonstrated to be a selective CB2 agonist (CB2 EC50 = 93 nM, Emax = 98%, CB1 EC50 > 10 microM). However, this compound exhibited poor solubility and relatively high clearance in rat, resulting in low oral bioavailability. In this paper, we report detailed SAR studies on 7 en route toward improving potency, physicochemical properties, and solubility. This effort resulted in identification of 63 that is a potent and selective agonist at CB2 (EC50 = 2 nM, Emax = 110%) with excellent pharmacokinetic properties.
Lysine demethylase 1 (LSD1) and Jumonji C domain-containing oxygenase D2C (JMJD2C) participate in regulating the methylation status of histone H3 lysine residues. In some contexts, LSD1 and JMJD2C activity causes enhanced cellular proliferation, which may lead to tumorigenesis. The authors explored the utility of time-resolved fluorescence resonance energy transfer (TR-FRET) immunoassays, which employed peptides consisting of the first 21 amino acids of histone H3 in which lysine 4 (H3K4) or lysine 9 (H3K9) was methylated (me) to quantify LSD1 and JMJD2C activity. The LSD1 assay monitored demethylation of the H3K4me1 peptide using an antibody that recognizes H3K4me1 but not the unmethylated peptide product. The JMJD2C assay measured demethylation of H3K9me3 with an antibody that selectively recognizes H3K9me2. The optimized conditions resulted in robust assays (Z′ > 0.7) that required only 3 to 6 nM of enzyme in a reaction volume of 6 to 10 µL. These assays were used to compare the activity of different LSD1 constructs and to determine the apparent K m of each JMJD2C substrate. Finally, both assays were used in a high-throughput setting for identifying demethylase inhibitors. Compounds discovered by these TR-FRET methods may lead to powerful tools for ascertaining the roles of demethylases in a cellular context and ultimately for potential cancer treatments.
Human NK cells are likely to be important effectors of xenograft rejection. Expression of HLA class I molecules by transfected porcine cells can protect them from human NK cell-mediated lysis; however, this strategy has the potential to augment the anti-graft response by recipient CD8+ T cells recognizing foreign pig peptides presented by HLA. In this study we show that the introduction of a mutation (D227K) in the α3 domain of HLA-Cw3 abrogates its recognition by CD8-dependent T cells but leaves intact its ability to function as an inhibitory ligand for NK cells. Such genetically modified molecules may have potential therapeutic applications in the prevention of delayed xenograft rejection and in the facilitation of allogeneic and xenogeneic bone marrow engraftment.
Transgenic expression of HLA molecules in pig cells will likely amplify the CD8+ CTL response against the xenograft. Disruption of HLA-CD8 interaction could minimize this amplification without compromising NK-cell inhibition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.