Shapelets are discriminative sub-sequences of time series that best predict the target variable. For this reason, shapelet discovery has recently attracted considerable interest within the time-series research community. Currently shapelets are found by evaluating the prediction qualities of numerous candidates extracted from the series segments. In contrast to the state-of-the-art, this paper proposes a novel perspective in terms of learning shapelets. A new mathematical formalization of the task via a classification objective function is proposed and a tailored stochastic gradient learning algorithm is applied. The proposed method enables learning nearto-optimal shapelets directly without the need to try out lots of candidates. Furthermore, our method can learn true top-K shapelets by capturing their interaction. Extensive experimentation demonstrates statistically significant improvement in terms of wins and ranks against 13 baselines over 28 time-series datasets.
Self-supervised learning is a promising new technique for learning representative features in the absence of manual annotations. It is particularly efficient in cases where labeling the training data is expensive and tedious, naturally linking it to the semi-supervised learning paradigm. In this work, we propose a new semi-supervised time series classification model that leverages features learned from the selfsupervised task on unlabeled data. The idea is to exploit the unlabeled training data with a forecasting task which provides a strong surrogate supervision signal for feature learning. We draw from established multitask learning approaches and model forecasting as an auxiliary task to be optimized jointly with the main task of classification. We evaluate our proposed method on benchmark time series classification datasets in semi-supervised setting and are able to show that it significantly outperforms the state-of-the-art baselines.
Meta-learning, or learning to learn, is a machine learning approach that utilizes prior learning experiences to expedite the learning process on unseen tasks. As a data-driven approach, meta-learning requires meta-features that represent the primary learning tasks or datasets, and are estimated traditonally as engineered dataset statistics that require expert domain knowledge tailored for every meta-task. In this paper, first, we propose a meta-feature extractor called Dataset2Vec that combines the versatility of engineered dataset meta-features with the expressivity of meta-features learned by deep neural networks. Primary learning tasks or datasets are represented as hierarchical sets, i.e., as a set of sets, esp. as a set of predictor/target pairs, and then a DeepSet architecture is employed to regress meta-features on them. Second, we propose a novel auxiliary meta-learning task with abundant data called dataset similarity learning that aims to predict if two batches stem from the same dataset or different ones. In an experiment on a large-scale hyperparameter optimization task for 120 UCI datasets with varying schemas as a meta-learning task, we show that the meta-features of Dataset2Vec outperform the expert engineered meta-features and thus demonstrate the usefulness of learned meta-features for datasets with varying schemas for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.