This clinical trial (ACTRN12619001296123) investigated the impact of silymarin (Legalon®) on circulating bilirubin concentration, lipid status, systemic inflammation, and antioxidant status. The study design was a randomized, placebo‐controlled, single‐blind crossover trial of healthy men (18‐65 years), conducted at Griffith University, Gold Coast, Australia. Participants were recruited from Griffith University and were randomized to silymarin (140 mg silymarin capsules thrice daily) or placebo (3 capsules containing mannitol taken daily) for 14 days followed by a ≥4‐week washout and crossover to the other arm. The main outcomes were whether silymarin treatment would increase serum bilirubin concentration by >0.29 mg/dL, change serum lipid status (cholesterol and triglycerides), inflammation (c‐reactive protein), and antioxidant capacity (ferric reducing ability of plasma) compared with baseline. Silymarin consumption (n = 17) did not affect serum concentrations of unconjugated bilirubin (0.73 versus 0.67 mg/dL, P = .79), cholesterol (185 versus 189 mg/dL, P = .19), triglycerides (94.2 versus 92.3 mg/dL, P = .79), c‐reactive protein (0.17 versus 0.09 mg/dL, P = .23), or antioxidant status (6.61 versus 6.67 mg Fe2+/dL, P = .40). These findings challenge previous reports and manufacturer claims of hyperbilirubinemia following silymarin treatment and are critical to guiding researchers toward an effective means to mildly elevate bilirubin, which evidence suggests could protect from cardiovascular disease.
Biliverdin (BV) possesses antioxidant and anti-inflammatory properties, with previous reports identifying protection against oxidant and inflammatory injury in animal models. Recent reports indicate that intra-duodenal administration of BV results in the formation of an uncharacterised metabolite, which is potently absorbed into the blood and excreted into the bile. This compound may be responsible for protection against inflammatory responses. This study aimed to identify novel, enterally-derived BV metabolites and determine the source of their metabolic transformation. Rat duodena and bacterial cultures of Citrobacter youngae were treated with BV and subsequently analysed via high performance liquid chromatography/high resolution tandem mass spectrometry to identify and characterise metabolites of BV. A highly abundant metabolite was detected in duodenal wash and bacterial culture supernatants with a 663.215 m/z (3 ppm mass accuracy) and a composition of C 33 N 4 O 9 H 36 S, which conformed to the predicted structure of bilirubin-10-sulfonate (BRS) and possessed a λ max of 440 nm. Bilirubin-10-sulfonate was then synthesized for comparative LCMS/MS analysis and matched with that of the biologically formed BV metabolite. This report confirms the formation of a previously undocumented metabolite of BV in mammals, indicating that a new metabolic pathway likely exists for BV metabolism requiring enteric bacteria, Citrobacter youngae . These data may have important implications with regard to understanding and harnessing the therapeutic efficacy of oral BV administration.
Linoleic acid (LA), an n-6 polyunsaturated fatty acid (PUFA), is essential for fetal growth and development. We aimed to investigate the effect of maternal and postnatal high LA (HLA) diet on plasma FA composition, plasma and hepatic lipids and genes involved in lipid metabolism in the liver of adult offspring. Female rats were fed with low LA (LLA; 1.44% LA) or HLA (6.21% LA) diets for 10 weeks before pregnancy, and during gestation/lactation. Offspring were weaned at postnatal day 25 (PN25), fed either LLA or HLA diets and sacrificed at PN180. Postnatal HLA diet decreased circulating total n-3 PUFA and alpha-linolenic acid (ALA), while increased total n-6 PUFA, LA and arachidonic acid (AA) in both male and female offspring. Maternal HLA diet increased circulating leptin in female offspring, but not in males. Maternal HLA diet decreased circulating adiponectin in males. Postnatal HLA diet significantly decreased aspartate transaminase (AST) in females and downregulated total cholesterol, HDL-cholesterol and triglycerides in the plasma of males. Maternal HLA diet downregulated the hepatic mRNA expression of Hmgcr in both male and female offspring and decreased the hepatic mRNA expression of Cpt1a and Acox1 in females. Both maternal and postnatal HLA diet decreased hepatic mRNA expression of Cyp27a1 in females. Postnatal diet significantly altered circulating fatty acid concentrations, with sex-specific differences in genes that control lipid metabolism in the adult offspring following exposure to high LA diet in utero.
Background: Biliverdin, a by-product of haem catabolism, possesses potent endogenous antioxidant and anti-inflammatory properties. Bilirubin-C10-sulfonate (BRS), an active metabolite formed after enteral administration of BV in the rat, also possess antioxidant properties. Therefore, we investigated the anti-inflammatory and antioxidant activity of BV and BRS in an in vivo model of monosodium urate induced sterile inflammation.Methods: Subcutaneous air pouches were created on the dorsal flanks of Wistar rats (10-12 weeks of age). Prior to stimulation of the 6-day old pouch with monosodium urate (25 mg), groups were pre-treated with intraperitoneal BRS (27 mg/kg) and BV (27 mg/kg). Total and differential leukocyte counts were determined in pouch fluid aspirate at 1, 6, 12, 24 and 48 h after monosodium urate stimulation. Biliverdin (BV), BRS and unconjugated bilirubin (UCB) concentrations in the serum and pouch fluid were quantified using liquid chromatographymass spectrometry. Pouch fluid cytokine concentrations (IL-1β, IL-1⍺, TNF-⍺, IL-17A, IL-12, GM-CSF, IL-33, IFN-, IL-18, IL-10, MCP-1, CXCL-1 and IL-6) were assessed after 6 h. In addition, 24 h protein carbonyl and chloramine concentrations were assessed in pouch fluid using ELISA and spectrophotometry, respectively.Results: BRS and BV significantly (p < 0.05) inhibited leukocyte (total, neutrophil and macrophage) infiltration into the pouch fluid from 6 to 48 h. For example, after 6 h neutrophil counts decreased following BRS (0.32 ± 0.11 × 10 6 cells mL -1 ) and BV (0.17 ± 0.03 × 10 6 cells mL -1 ) compared to MSU only (3.51 ± 1.07 × 10 6 cells mL -1 ). Both BV and BRS significantly (p < 0.05) reduced pouch GM-CSF (
Background: Circulating bilirubin is associated with reduced adiposity in human and animal studies. A possible explanation is provided by in vitro data that demonstrates that bilirubin inhibits mitochondrial function and decreases efficient energy production. However, it remains unclear whether hyperbilirubinemic animals have similar perturbed mitochondrial function and whether this is important for regulation of energy homeostasis.Aim: To investigate the impact of unconjugated hyperbilirubinemia on body composition, and mitochondrial function in hepatic tissue and skeletal muscle.Materials and Methods: 1) Food intake and bodyweight gain of 14-week old hyperbilirubinemic Gunn (n = 19) and normobilirubinemic littermate (control; n = 19) rats were measured over a 17-day period. 2) Body composition was determined using dual-energy X-ray absorptiometry and by measuring organ and skeletal muscle masses. 3) Mitochondrial function was assessed using high-resolution respirometry of homogenized liver and intact permeabilized extensor digitorum longus and soleus fibers. 4) Liver tissue was flash frozen for later gene (qPCR), protein (Western Blot and citrate synthase activity) and lipid analysis.Results: Female hyperbilirubinemic rats had significantly reduced fat mass (Gunn: 9.94 ± 5.35 vs. Control: 16.6 ± 6.90 g, p < 0.05) and hepatic triglyceride concentration (Gunn: 2.39 ± 0.92 vs. Control: 4.65 ± 1.67 mg g−1, p < 0.01) compared to normobilirubinemic controls. Furthermore, hyperbilirubinemic rats consumed fewer calories daily (p < 0.01) and were less energetically efficient (Gunn: 8.09 ± 5.75 vs. Control: 14.9 ± 5.10 g bodyweight kcal−1, p < 0.05). Hepatic mitochondria of hyperbilirubinemic rats demonstrated increased flux control ratio (FCR) via complex I and II (CI+II) (Gunn: 0.78 ± 0.16 vs. Control: 0.62 ± 0.09, p < 0.05). Similarly, exogenous addition of 31.3 or 62.5 μM unconjugated bilirubin to control liver homogenates significantly increased CI+II FCR (p < 0.05). Hepatic PGC-1α gene expression was significantly increased in hyperbilirubinemic females while FGF21 and ACOX1 was significantly greater in male hyperbilirubinemic rats (p < 0.05). Finally, hepatic mitochondrial complex IV subunit 1 protein expression was significantly increased in female hyperbilirubinemic rats (p < 0.01).Conclusions: This is the first study to comprehensively assess body composition, fat metabolism, and mitochondrial function in hyperbilirubinemic rats. Our findings show that hyperbilirubinemia is associated with reduced fat mass, and increased hepatic mitochondrial biogenesis, specifically in female animals, suggesting a dual role of elevated bilirubin and reduced UGT1A1 function on adiposity and body composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.