Bone tissue healing is a dynamic process that is initiated by the recruitment of osteoprogenitor cells followed by their migration, proliferation, differentiation, and development of a mineralizing extracellular matrix. The work aims to manufacture a functionalized porous membrane that stimulates early events in bone healing for initiating a regenerative cascade. Layer‐by‐layer (LbL) assembly is proposed to modify the surface of osteoconductive electrospun meshes, based on poly(lactic‐co‐glycolic acid) and nanohydroxyapatite, by using poly(allylamine hydrochloride) and poly(sodium 4‐styrenesulfonate) as polyelectrolytes. Molecular cues are incorporated by grafting peptide fragments into the discrete nanolayers. KRSR (lysine‐arginine‐serine‐arginine) sequence is grafted to enhance cell adhesion and proliferation, NSPVNSKIPKACCVPTELSAI to guide bone marrow mesenchymal stem cells differentiation in osteoblasts, and FHRRIKA (phenylalanine‐histidine‐arginine‐arginine‐isoleucine‐lysine‐alanine) to improve mineralization matrix formation. Scanning electron microscopy, infrared spectroscopy, and X‐ray photoelectron spectroscopy demonstrate the successful surface functionalization. Furthermore, the peptide incorporation enhances cellular processes, with good viability and significant increase of alkaline phosphatase activity, osteopontin, and osteocalcin. The functionalized membrane induces a favorable in vivo response after implantation for four weeks in nonhealing rat calvarial defect model. It is concluded that the multilayer nanoencapsulation of biofunctional peptides using LbL approach has significant potential as innovative manufacturing technique to improve bone regeneration in orthopedic and craniofacial medical devices.
The inclusion of biofunctional molecules with synthetic bone graft substitutes has the potential to enhance tissue regeneration during treatment of traumatic bone injuries. The clinical use of growth factors has though been associated with complications, some serious. The use of smaller, active peptides has the potential to overcome these problems and provide a cost-effective, safe route for the manufacture of enhanced bone graft substitutes. This review considers the design of peptide-enhanced bone graft substitutes, and how peptide selection and attachment method determine clinical efficacy. It was determined that covalent attachment may reduce the known risks associated with growth factor-loaded bone graft substitutes, providing a predictable tissue response and greater clinical efficacy. Peptide choice was found to be critical, but even within recognised families of biologically active peptides, the configurations that appeared to most closely mimic the biological molecules involved in natural bone healing processes were most potent. It was concluded that rational, evidence-based design of peptide-enhanced bone graft substitutes offers a pathway to clinical maturity in this highly promising field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.