Wearable acceleration sensors are increasingly used for the assessment of free-living physical activity. Acceleration sensor calibration is a potential source of error. This study aims to describe and evaluate an autocalibration method to minimize calibration error using segments within the free-living records (no extra experiments needed). The autocalibration method entailed the extraction of nonmovement periods in the data, for which the measured vector magnitude should ideally be the gravitational acceleration (1 g); this property was used to derive calibration correction factors using an iterative closest-point fitting process. The reduction in calibration error was evaluated in data from four cohorts: UK (n = 921), Kuwait (n = 120), Cameroon (n = 311), and Brazil (n = 200). Our method significantly reduced calibration error in all cohorts (P < 0.01), ranging from 16.6 to 3.0 mg in the Kuwaiti cohort to 76.7 to 8.0 mg error in the Brazil cohort. Utilizing temperature sensor data resulted in a small nonsignificant additional improvement (P > 0.05). Temperature correction coefficients were highest for the z-axis, e.g., 19.6-mg offset per 5°C. Further, application of the autocalibration method had a significant impact on typical metrics used for describing human physical activity, e.g., in Brazil average wrist acceleration was 0.2 to 51% lower than uncalibrated values depending on metric selection (P < 0.01). The autocalibration method as presented helps reduce the calibration error in wearable acceleration sensor data and improves comparability of physical activity measures across study locations. Temperature ultization seems essential when temperature deviates substantially from the average temperature in the record but not for multiday summary measures.
The Sedentary Sphere enables determination of the most likely posture from the wrist-worn GENEActiv. Visualizing behaviors on the sphere displays the pattern of wrist movement and positions within that behavior.
The Leeds Beckett repository holds a wide range of publications, each of which has been checked for copyright and the relevant embargo period has been applied by the Research Services team.We operate on a standard take-down policy. If you are the author or publisher of an output and you would like it removed from the repository, please contact us and we will investigate on a case-by-case basis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.