In age-hardening alloys, high-temperature processes, such as welding, can strongly modify the precipitation state, and thus degrade the associated mechanical properties. The aim of this paper is to present a coupled approach able to describe precipitation and associated yield stresses for non-isothermal treatments of a 6061 aluminium alloy. The precipitation state (in terms of volume fraction and precipitate size distribution) is modelled thanks to a recent implementation of the classical nucleation and growth theories for needle-shaped precipitates. The precipitation model is validated through small-angle neutron scattering and transmission electron microscopy experiments. The precipitation size distribution is then used as an entry parameter of a micromechanical model for the yield strength of the alloy. Predicted yield stresses are compared to tensile tests performed with various heating conditions, representative of the heat-affected zone of a welded joint.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.