Detailed population-level description of the human immune system has recently become achievable. We used a “systems-level” approach to establish a resource of cellular immune profiles of 670 healthy individuals. We report a high level of inter-individual variation, with low longitudinal variation, at the level of cellular subset composition of the immune system. Despite the profound effects of antigen exposure on individual antigen-specific clones, the cellular subset structure proved highly elastic, with transient vaccination-induced changes being followed by a return to the unique baseline of the individual. Strikingly, the largest influence on immunological variation identified was cohabitation, with a 50% reduction in immunological variation between individuals who share an environment (parents) compared to the wider population. These results identify local environmental conditions are a key shaper of the human immune system.
Pyrin responds to pathogen signals and loss of cellular homeostasis by forming an inflammasome complex that drives the cleavage and secretion of IL-1β. We studied a family with dominantly inherited autoinflammatory disease characterised by childhood-onset recurrent episodes of neutrophilic dermatosis, fever, elevated acute-phase reactants, arthralgia, and myalgia/myositis. Disease was caused by a mutation in MEFV, the gene encoding pyrin (S242R). The clinical distinction from FMF, also caused by MEFV mutation, was due to loss of a 14-3-3 binding motif at phosphorylated S242. This interaction represents a guard regulating pyrin activation, which is downstream of bacterial effectors that trigger the pyrin inflammasome. S242R mutation recapitulated the effect of pathogen sensing, triggering inflammasome activation and IL-1β production. Successful therapy targeting IL-1β has been initiated in one patient, resolving Pyrin-Associated Autoinflammation with Neutrophilic Dermatosis (PAAND). This unique disease provides evidence that a guard mechanism, originally identified in plant innate immunity, also exists in humans.3 Main textAutoinflammatory diseases are characterized by recurrent episodes of fever with systemic and organ-specific inflammation, as well as uncontrolled activation of the innate immune response in the apparent absence of an infectious trigger(1). Familial Mediterranean fever (FMF, OMIM ID: 249100) is the most common of these monogenic diseases, characterized by short (24-72 h) episodes of fever associated with serositis, progressing to amyloidosis if untreated(2). FMF is an autosomal recessive disease caused by mutations in both alleles of the MEFV (MEditerranean FeVer) locus, which encodes the protein pyrin(3). Normally, pyrin functions as a link between intracellular pathogen sensing and activation of the inflammasome, allowing the production of inflammatory mediators during infection. As a potent checkpoint for the initiation of inflammation, the mechanisms of pyrin regulation are critical, and yet still poorly understood.We studied a three-generation Belgian family of 22 individuals, of whom 12 developed autoinflammatory disease (Figure 1a). The disease was characterized by neutrophilic dermatosis, childhood-onset recurrent episodes of fever lasting several weeks, increased levels of acute-phase reactants, arthralgia and myalgia/myositis (Figure 1b). The neutrophilic dermatosis comprised a spectrum of clinical manifestations including severe acne, sterile skin abscesses, pyoderma gangrenosum and neutrophilic small vessel vasculitis (Figure 1c,d).Pathological examination of affected skin showed a dense, predominantly neutrophilic, vascular, perivascular and interstitial infiltrate (Figure 1d). Serum cytokine analysis revealed elevated inflammatory mediators such as IL-1β, IL-6 and TNFα, and cytokines induced by inflammation such as IL-1Ra (Figure 1e, Figure S1a unlike some of the more typical FMF variants, that naturally occur in other species(7). Despite the association of MEFV mutations w...
The microRNA-29 (miR-29) family is among the most abundantly expressed microRNA in the pancreas and liver. Here, we investigated the function of miR-29 in glucose regulation using miR-29a/b-1 (miR-29a)-deficient mice and newly generated miR-29b-2/c (miR-29c)-deficient mice. We observed multiple independent functions of the miR-29 family, which can be segregated into a hierarchical physiologic regulation of glucose handling. miR-29a, and not miR-29c, was observed to be a positive regulator of insulin secretion in vivo, with dysregulation of the exocytotic machinery sensitizing β-cells to overt diabetes after unfolded protein stress. By contrast, in the liver both miR-29a and miR-29c were important negative regulators of insulin signaling via phosphatidylinositol 3-kinase regulation. Global or hepatic insufficiency of miR-29 potently inhibited obesity and prevented the onset of diet-induced insulin resistance. These results demonstrate strong regulatory functions for the miR-29 family in obesity and diabetes, culminating in a hierarchical and dose-dependent effect on premature lethality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.