Holographic methods from optics can be adapted to acoustics for enabling novel applications in particle manipulation or patterning by generating dynamic custom-tailored acoustic fields. Here, we present three contributions towards making the field of acoustic holography more widespread. Firstly, we introduce an iterative algorithm that accurately calculates the amplitudes and phases of an array of ultrasound emitters in order to create a target amplitude field in mid-air. Secondly, we use the algorithm to analyse the impact of spatial, amplitude and phase emission resolution on the resulting acoustic field, thus providing engineering insights towards array design. For example, we show an onset of diminishing returns for smaller than a quarter-wavelength sized emitters and a phase and amplitude resolution of eight and four divisions per period, respectively. Lastly, we present a hardware platform for the generation of acoustic holograms. The array is integrated in a single board composed of 256 emitters operating at 40 kHz. We hope that the results and procedures described within this paper enable researchers to build their own ultrasonic arrays and explore novel applications of ultrasonic holograms.
In this project, we create artificial piloerection using contactless electrostatics to induce tactile sensations in a contactless way. Firstly, we design various high-voltage generators and evaluate them in terms of their static charge, safety and frequency response with different electrodes as well as grounding strategies. Secondly, a psychophysics user study revealed which parts of the upper body are more sensitive to electrostatic piloerection and what adjectives are associated with them. Finally, we combine an electrostatic generator to produce artificial piloerection on the nape with a head-mounted display, this device provides an augmented virtual experience related to fear. We hope that work encourages designers to explore contactless piloerection for enhancing experiences such as music, short movies, video games, or exhibitions.
A set of demonstrators of contactless haptic principles is described in this work. The technologies are based on electrostatic piloerection, chemical compounds and ultrasound. Additionally, applications related to affective touch are presented, ranging from storytelling to biosignal transfer, accompanied with a simple application to edit dynamic tactile patterns in an easy way. The demonstrators are the result of the Touchless project, which is a H2020 european collaborative project that integrates 3 universities and 3 companies. These demostrators are contactless haptic experiences and thus facilitate the come-and-interact paradigm, where users can approach the demo booth and directly experience the applications without having to wear devices, making the experience fast and hygienic.CCS Concepts: • Human-centered computing → Haptic devices.
Programmable matter can change its shape, stiffness or other physical properties upon command. Previous work has shown contactless optically controlled matter or magnetic actuation, but the former is limited in strength and the latter in spatial resolution. Here, we show an unprecedented level of control combining light patterns and magnetic fields. A mixture of thermoplastic and ferromagnetic powder is heated up at specific locations that become malleable and are attracted by magnetic fields. These heated areas solidify on cool down, and the process can be repeated. We show complex control of 3D slabs, 2D sheets, and 1D filaments with applications in tactile displays and object manipulation. Due to the low transition temperature and the possibility of using microwave heating, the compound can be manipulated in air, water, or inside biological tissue having the potential to revolutionize biomedical devices, robotics or display technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.