Recombinant Rhizopus oryzae lipase (mature sequence, rROL) was modified by adding to its N-terminal 28 additional amino acids from the C-terminal of the prosequence (proROL) to obtain a biocatalyst more suitable for the biodiesel industry. Both enzymes were expressed in Pichia pastoris and compared in terms of production bioprocess parameters, biochemical properties, and stability. Growth kinetics, production, and yields were better for proROL harboring strain than rROL one in batch cultures. When different fed-batch strategies were applied, lipase production and volumetric productivity of proROL-strain were always higher (5.4 and 4.4-fold, respectively) in the best case. rROL and proROL enzymatic activity was dependent on ionic strength and peaked in 200 mM Tris-HCl buffer. The optimum temperature and pH for rROL were influenced by ionic strength, but those for proROL were not. The presence of these amino acids altered lipase substrate specificity and increased proROL stability when different temperature, pH, and methanol/ethanol concentrations were employed. The 28 amino acids were found to be preferably removed by proteases, leading to the transformation of proROL into rROL. Nevertheless, the truncated prosequence enhanced Rhizopus oryzae lipase heterologous production and stability, making it more appropriate as industrial biocatalyst.
Lipases are biocatalysts with a significant potential to enable a shift from current pollutant manufacturing processes to environmentally sustainable approaches. The main reason of this prospect is their catalytic versatility as they carry out several industrially relevant reactions as hydrolysis of fats in water/lipid interface and synthesis reactions in solvent-free or non-aqueous media such as transesterification, interesterification and esterification. Because of the outstanding traits of Rhizopus oryzae lipase (ROL), 1,3-specificity, high enantioselectivity and stability in organic media, its application in energy, food and pharmaceutical industrial sector has been widely studied. Significant advances have been made in the biochemical characterisation of ROL particularly in how its activity and stability are affected by the presence of its prosequence. In addition, native and heterologous production of ROL, the latter in cell factories like Escherichia coli, Saccharomyces cerevisiae and Komagataella phaffii (Pichia pastoris), have been thoroughly described. Therefore, in this review, we summarise the current knowledge about R. oryzae lipase (i) biochemical characteristics, (ii) production strategies and (iii) potential industrial applications.
Rhizopus oryzae lipase (ROL) containing 28 C-terminal amino acids of the prosequence fused to the N-terminal mature sequence in ROL (proROL) was successfully expressed in the methylotrophic yeast Komagataella phaffii (Pichia pastoris) under the constitutive glyceraldehyde-3-phosphate dehydrogenase promoter (PGAP). Although the sequence encoding the mature lipase (rROL) was also transformed, no clones were obtained after three transformation cycles, which highlights the importance of the truncated prosequence to obtain viable transformed clones. Batch cultures of the K. phaffii strain constitutively expressing proROL scarcely influenced growth rate and exhibited a final activity and volumetric productivity more than six times higher than those obtained with proROL from K. phaffii under the methanol-inducible alcohol oxidase 1 promoter (PAOX1). The previous differences were less marked in fed-batch cultures. N-terminal analysis confirmed the presence of the 28 amino acids in proROL. In addition, immobilized proROL exhibited increased tolerance of organic solvents and an operational stability 0.25 and 3 times higher than that of immobilized rROL in biodiesel and ethyl butyrate production, respectively. Therefore, the truncated prosequence enables constitutive proROL production, boosts bioprocess performance and provides a more stable biocatalyst in two reactions in which lipases are mostly used at industrial level, esterification (ethyl butyrate) and transesterification (biodiesel).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.