We introduce a natural generalisation of holomorphic curves to morphisms of supermanifolds, referred to as holomorphic supercurves. More precisely, supercurves are morphisms from a Riemann surface, endowed with the structure of a supermanifold which is induced by a holomorphic line bundle, to an ordinary almost complex manifold. They are called holomorphic if a generalised Cauchy-Riemann condition is satisfied. We show, by means of an action identity, that holomorphic supercurves are special extrema of a supersymmetric action functional.
The transformation formula of the Berezin integral holds, in the non-compact case, only up to boundary integrals, which have recently been quantified by AlldridgeHilgert-Palzer. We establish divergence theorems in semi-Riemannian supergeometry by means of the flow of vector fields and these boundary integrals, and show how superharmonic functions are related to conserved quantities. An integration over the supersphere was introduced by Coulembier-De Bie-Sommen as a generalisation of the Pizzetti integral. In this context, a mean value theorem for harmonic superfunctions was established. We formulate this integration along the lines of the general theory and give a superior proof of two mean value theorems based on our divergence theorem.
We study holomorphic supercurves, which are motivated by supergeometry as a natural generalisation of holomorphic curves. We prove that, upon perturbing the defining equations by making them depend on a connection, the corresponding linearised operator is generically surjective. By this transversality result, we show that the resulting moduli spaces are oriented finite dimensional smooth manifolds. Finally, we examine how they depend on the choice of generic data.2010 Mathematics Subject Classification. 53D35, 58C15.
The harmonic action functional allows a natural generalisation to semi-Riemannian supergeometry, referred to as superharmonic action, which resembles the supersymmetric sigma models studied in high energy physics. We show that Killing vector fields are infinitesimal supersymmetries of the superharmonic action and prove three different Noether theorems in this context. En passant, we provide a homogeneous treatment of five characterisations of Killing vector fields on semi-Riemannian supermanifolds, thus filling a gap in the literature.
We study the compactness problem for moduli spaces of holomorphic supercurves which, being motivated by supergeometry, are perturbed such as to allow for transversality. We give an explicit construction of limiting objects for sequences of holomorphic supercurves and prove that, in important cases, every such sequence has a convergent subsequence provided that a suitable extension of the classical energy is uniformly bounded. This is a version of Gromov compactness. Finally, we introduce a topology on the moduli spaces enlarged by the limiting objects which makes these spaces compact and metrisable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.