The diffusion kinetics in a CoCrFeMnNi high entropy alloy is investigated by a combined radiotracerinterdiffusion experiment applied to a pseudo-Ni 15 couple. As a result, the composition-dependent tracer diffusion coefficients of Co, Cr, Fe and Mn are determined. The elements are characterized by significantly different diffusion rates, with Mn being the fastest element and Co being the slowest one. The elements having originally equiatomic concentration through the diffusion couple are found to reveal up-hill diffusion, especially Cr and Mn. The atomic mobility of Co seems to follow an S-shaped concentration dependence along the diffusion path. The experimentally measured kinetic data are checked against the existing CALPHAD-type databases. In order to ensure a consistent treatment of tracer and chemical diffusion a generalized symmetrized continuum approach for multi-component interdiffusion is proposed. Both, tracer and chemical diffusion concentration profiles are simulated and compared to the measurements. By using the measured tracer diffusion coefficients the chemical profiles can be described, almost perfectly, including up-hill diffusion.
Tracer diffusion of all constituting elements is studied at various temperatures in a series of (CoCrFeMn) 100−x Ni x alloys with compositions ranging from pure Ni to the equiatomic CoCrFeMnNi high-entropy alloy. At a given homologous temperature, the measured tracer diffusion coefficients change non-monotonically along the transition from pure Ni to the concentrated alloys and finally to the equiatomic CoCrFeMnNi alloy. This is explained by atomistic Monte-Carlo simulations based on a modified embedded-atom potentials, which reveal that local heterogeneities of the atomic configurations around a vacancy cause correlation effects and induce significant deviations from predictions of the random alloy model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.