The amphibian olfactory system undergoes massive remodeling during metamorphosis. The transition from aquatic olfaction in larvae to semiaquatic or airborne olfaction in adults requires anatomical, cellular, and molecular modifications. These changes are particularly pronounced in Pipidae, whose adults have secondarily adapted to an aquatic life style. In the fully aquatic larvae of Xenopus laevis, the main olfactory epithelium specialized for sensing water-borne odorous substances lines the principal olfactory cavity (PC), whereas a separate olfactory epithelium lies in the vomeronasal organ (VNO). During metamorphosis, the epithelium of the PC is rearranged into the adult "air nose," whereas a new olfactory epithelium, the adult "water nose," forms in the emerging middle cavity (MC). Here we performed a stage-by-stage investigation of the anatomical changes of the Xenopus olfactory organ during metamorphosis. We quantified cell death in all olfactory epithelia and found massive cell death in the PC and the VNO, suggesting that the majority of larval sensory neurons is replaced during metamorphosis in both sensory epithelia. The moderate cell death in the MC shows that during the formation of this epithelium some cells are sorted out. Our results show that during MC formation some supporting cells, but not sensory neurons, are relocated from the PC to the MC and that they are eventually eliminated during metamorphosis. Together our findings illustrate the structural and cellular changes of the Xenopus olfactory organ during metamorphosis.
The Rho kinase (ROCK) inhibitor Fasudil is a promising drug for a disease-modifying therapy of amyotrophic lateral sclerosis (ALS). In preclinical models, Fasudil was shown to increase motor neuron survival, inhibit axonal degeneration, enhance axonal regeneration and modulate microglial function in vitro and in vivo. It prolonged survival and improved motor function of SOD1-G93A-mice. Recently, a phase IIa clinical trial has been commenced to investigate the safety, tolerability, and efficacy of Fasudil in ALS patients at an early stage of disease (ROCK-ALS trial, NCT03792490, Eudra-CT-Nr.: 2017-003676-31). Although Fasudil has been approved in Japan for many years for the treatment of vasospasms following subarachnoid hemorrhage and is known to have a favorable side effect profile in these patients, there is no data on its use in human patients with ALS or any other neurodegenerative conditions. Here, we report the first three cases of compassionate use of Fasudil in patients with ALS. Between May 2017 and February 2019, one male (66 years old) and two female (62 and 68 years old) subjects with probable or definite ALS according to the El Escorial criteria (one of the females having a pathogenic SOD1 mutation) were administered Fasudil 30 mg intravenously twice daily over 45 min on 20 consecutive working days. Blood pressure, heart rate and routine laboratory tests were constantly controlled. All three subjects tolerated the Fasudil infusions well without any obvious side effects. Interestingly, the slow vital capacity showed a significant increase in one of the patients. Taken together, we report here the first compassionate use of the ROCK inhibitor Fasudil in three ALS patients, which was well-tolerated.
An inherent challenge to clinical trials that aim to test the efficacy of experimental therapeutics for patients with amyotrophic lateral sclerosis (ALS) is the relative rarity of the disease. A promising solution to this problem is a multi-center approach that ideally includes sites distributed across a broad geographic area. In support of such an approach, the European E-RARE program and the United States National Institutes of Health (NIH) partnered to support the investigator-initiated ROCK-ALS trial (Eudra-CT-Nr.: 2017-003676-31, NCT03792490) as a multinational collaboration between centers in Europe and North America that is led by European investigators. During the setup of this international trial, however, a number of unanticipated legal, administrative, and financial complexities emerged that required significant adaptation of the proposed trial scheme. Here, we report our experience navigating these obstacles and describe the potential solutions that we explored. Our experience may inform future efforts to implement multinational investigator-initiated trials that involve both European and United States centers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.