Snow is a very active photochemical reactor that considerably affects the composition and chemistry of the lower troposphere in polar regions. Snow photochemistry models have therefore been recently developed to describe these processes. In all those models, the chemically active medium is a brine formed at the surface of snow crystals by impurities whose presence cause surface melting. Reaction and photolysis rate coefficients are those measured in dilute liquid solutions. Here, we critically examine the basis for these models by considering the structure of ice crystal surfaces, the processes involved in the interactions between impurities and ice crystals, the location of impurities in snow, and the reactivity of impurities in the various media present in snow. We conclude that the brine formed by impurities can only be present in grooves at grain boundaries and cannot cover ice crystal surfaces because of insufficient ice wettability. It is then very likely that most reactions in snow do not take place in liquids, but rather either on an actual ice surface highly different from a liquid or in particulate matter contained in snow, such as organic particles that are thought to contain most snow chromophores. We discuss why some snow models appear to adequately reproduce some observations, concluding that they are insufficiently constrained and that the use of adjustable parameters allows acceptable fits. We discuss the complexity of developing a snow model without adjustable parameters and with a predictive value. We conclude that reaching this goal in the near future is a tremendous challenge. Modeling attempts focused on snow where the impact of organic particles is minimal, such as on the east Antarctic plateau, represents the best chance of midterm success.
[1] The structure of the snowpack near Barrow was studied in March-April 2009. Vertical profiles of density, specific surface area (SSA) and thermal conductivity were measured on tundra, lakes and landfast ice. The average thickness was 41 cm on tundra and 21 cm on fast ice. Layers observed were diamond dust or recent wind drifts on top, overlaying wind slabs, occasional faceted crystals and melt-freeze crusts, and basal depth hoar layers. The top layer had a SSA between 45 and 224 m 2 kg À1 . All layers at Barrow had SSAs higher than at many other places because of the geographical and climatic characteristics of Barrow. In particular, a given snow layer was remobilized several times by frequent winds, which resulted in SSA increases each time. The average snow area index (SAI, the dimensionless vertically integrated SSA) on tundra was 3260, higher than in the Canadian High Arctic or in the Alaskan taiga. This high SAI, combined with low snow temperatures, imply that the Barrow snowpack efficiently traps persistent organic pollutants, as illustrated with simple calculations for PCB 28 and PCB 180. The average thermal conductivity was 0.21 Wm À1 K À1 , and the average thermal resistance on tundra was 3.25 m 2 K W À1 . This low value partly explains why the snow-ground interface was cold, around À19°C. The high SAI and low thermal resistance values illustrate the interplay between climate, snow physical properties, and their potential impact on atmospheric chemistry, and the need to describe these relationships in models of polar climate and atmospheric chemistry, especially in a climate change context. Citation: Domine, F., J.-C. Gallet, J. Bock, and S. Morin (2012), Structure, specific surface area and thermal conductivity of the snowpack around Barrow, Alaska,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.