Forecasting of stock market returns is a challenging research activity that is now expanding with the availability of new data sources, markets, financial instruments, and algorithms. At its core, the predictability of prices still raises important questions. Here, we discuss the economic significance of the prediction accuracy. To develop this question, we collect the daily series prices of almost half of the publicly traded companies around the world over a period of ten years and formulate some trading strategies based on their prediction. Proper visualization of these data together with the use of the No Free Lunch theoretical framework gives some unexpected results that show how the a priori less accurate algorithms and inefficient strategies can offer better results than the a priori best alternatives in some particular subsets of data that have a clear interpretation in terms of economic sectors and regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.