Molecular electrostatic potential (MEP) and pattern recognition (PR) were used to draw potentially active pentamidine derivatives against Trypanosome brucei rhodesiense (T. b. rhodesiense). PR models: Principal Component Analysis, PCA model; Hierarchical Cluster Analysis, HCA model; K-Nearest Neighbor, KNN model; Soft Independent Modeling of Class Analogy, SIMCA model; and Stepwise Discriminant Analysis, SDA model, were built by reducing the dimensionality of a data matrix to twenty-eight pentamidine derivatives and allowed the compounds to be classified into two classes: more active and less active, according to their degrees of activity against T. b. rhodesiense. The study outlined that the properties HOMO (highest occupied molecular orbital) energy, VOL (molecular volume), and ASA_P (water accessible surface area of all polar (½qi½³0. 2) atoms) are the most relevant for the construction of the models. The key structural features required for biological activity investigated through MEP were used as guidelines in the design of thirteen new compounds, which were evaluated by PR models as more active or less active against T. b. rhodesiense. The application of PR models indicated nine promising compounds (29, 30, 31, 32, 33, 36, 37, 39, and 40) for synthesis and biological assays.
Artemisinins tested against W-2 strains of malaria falciparum are investigated with molecular electrostatic potential (MEP), in an attempt to identify key features of the compounds that are necessary for their activities, as well as to investigate likely interactions with the receptor in a biological process and to use that information to propose new molecules. In order to discover the best geometry involving the ligand-receptor complexes (heme) studied and help in the proposition of the new derivatives, molecular simulations of interactions between the most negative charged region around the peroxide and heme locates (the ones around the Fe 2+ ion) were carried out. In addition, PCA (principal components analysis), HCA (hierarchical cluster analysis), SDA (stepwise discriminant analysis), and KNN (K-nearest neighbor) multivariate models were employed to investigate which descriptors are responsible for the classification between the higher and lower antimalarial activity of the compounds, and also this information was used to propose new potentially active molecules. The information accumulated in studies of MEP, molecular docking, and multivariate analysis supported the proposal of new structures with potential antimalarial activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.