The objective of this research was to study the purification of industrial-grade phosphoric acid (P2O5) by conventional electrodialysis. The experiments were conducted using a three-compartment cell with anion and cation membranes, and industrial acid solution was introduced into the central compartment. The elemental analysis of the diluted solution indicated that the composition of magnesium, phosphates, and sodium was reduced in the central compartment. The ratios of the concentration of the ions and the phosphates were essentially unchanged by the process. Consequently, electrodialysis could not purify the acid in the central compartment, and the migration of phosphate ions to the anolyte produced a highly concentrated phosphoric acid solution containing sulfates and chlorides as impurities. However, the migration of the phosphate ions across the membrane consumed a large amount of energy. Detailed speciation diagrams were constructed in this study. These diagrams showed that metal-phosphate complexes were predominant in the industrial phosphoric acid solution. This result explains why the ratios of the concentrations of the ion metals and the phosphates did not change in the purification process. The energy consumed in the electrodialysis indicated that the metal-phosphate complexes were less mobile than the free-phosphate ions. The speciation diagrams explained the experimental results satisfactorily.
Sodium titanates were evaluated as heterogeneous catalysts for biodiesel production. Materials were prepared using an experimental design considering NaOH and TiO2 concentrations and hydrothermal and calcination temperatures as input variables. Materials characterization was carried out by DRX-Rietveld refinement, CO2-TPD, and XPS. Statistical analysis of the experimental results indicates that the calcination temperature is the most influential factor in the formation of sodium titanates with high catalytic performance in transesterification reactions. Further analysis of the oil-to-biodiesel conversion revealed that the catalytic activity of sodium titanates is directly correlated to the catalyst associated species and to the density of medium-strong basic sites on the surface of the material, obtaining up to 95% conversion to biodiesel at 60 °C using 3.6% weight catalyst with respect to oil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.