The human cingulate cortex (CC), included in the paralimbic cortex, participates in emotion, visceral responses, attention, cognition, and social behaviors. The CC has spindle-shaped/fusiform cell body neurons in its layer V, the von Economo neurons (VENs). VENs have further developed in primates, and the characterization of human VENs can benefit from the detailed descriptions of the shape of dendrites and spines. Here, we advance this issue and studied VENs in the anterior and midcingulate cortex from four neurologically normal adult subjects. We used the thionin technique and the adapted "single-section" Golgi method for light microscopy. Three-dimensional (3D) reconstructions were carried out for the visualization of Golgi-impregnated VENs' cell body, ascending and descending dendrites, and collateral branches. We also looked for the presence, density, and shape of spines from proximal to distal dendrites. These neurons have a similar aspect for the soma, but features of spiny dendrites evidenced a morphological heterogeneity of CC VENs. Only for the description of this continuum of shapes, we labeled the most common feature as VEN 1, which has main dendritic shafts but few branches and sparse spines. VEN 2 shows an intermediate aspect, whereas VEN 3 displays the most profuse dendritic ramification and more spines with varied shapes from proximal to distal branches. Morphometric data exemplify the dendritic features of these cells. The heterogeneity of the dendritic architecture and spines suggests additional functional implications for the synaptic and information processing in VENs in integrated networks of normal and, possibly, neurological/psychiatric conditions involving the human CC.
Visualizing nerve cells has been fundamental for the systematic description of brain structure and function in humans and other species. Different approaches aimed to unravel the morphological features of neuron types and diversity. The inherent complexity of the human nervous tissue and the need for proper histological processing have made studying human dendrites and spines challenging in postmortem samples. In this study, we used Golgi data and open-source software for 3D image reconstruction of human neurons from the cortical amygdaloid nucleus to show different dendrites and pleomorphic spines at different angles. Procedures required minimal equipment and generated high-quality images for differently shaped cells. We used the "singlesection" Golgi method adapted for the human brain to engender 3D reconstructed images of the neuronal cell body and the dendritic ramification by adopting a neuronal tracing procedure. In addition, we elaborated 3D reconstructions to visualize heterogeneous dendritic spines using a supervised machine learning-based algorithm for image segmentation. These tools provided an additional upgrade and enhanced visual display of information related to the spatial orientation of dendritic branches and for dendritic spines of varied sizes and shapes in these human subcortical neurons. This same approach can be adapted for other techniques, areas of the central or peripheral nervous system, and comparative analysis between species.
The human posteromedial cortex (PMC), which includes the precuneus (PC), represents a multimodal brain area implicated in emotion, conscious awareness, spatial cognition, and social behavior. Here, we describe the presence of Nissl-stained elongated spindle-shaped neurons (suggestive of von Economo neurons, VENs) in the cortical layer V of the anterior and central PC of adult humans. The adapted “single-section” Golgi method for postmortem tissue was used to study these neurons close to pyramidal ones in layer V until merging with layer VI polymorphic cells. From three-dimensional (3D) reconstructed images, we describe the cell body, two main longitudinally oriented ascending and descending dendrites as well as the occurrence of spines from proximal to distal segments. The primary dendritic shafts give rise to thin collateral branches with a radial orientation, and pleomorphic spines were observed with a sparse to moderate density along the dendritic length. Other spindle-shaped cells were observed with straight dendritic shafts and rare branches or with an axon emerging from the soma. We discuss the morphology of these cells and those considered VENs in cortical areas forming integrated brain networks for higher-order activities. The presence of spindle-shaped neurons and the current discussion on the morphology of putative VENs address the need for an in-depth neurochemical and transcriptomic characterization of the PC cytoarchitecture. These findings would include these spindle-shaped cells in the synaptic and information processing by the default mode network and for general intelligence in healthy individuals and in neuropsychiatric disorders involving the PC in the context of the PMC functioning.
The sphenoid is a bone that is part of the neurocranium and is located in the middle cranial fossa. A lot of anatomic structures go through its foramina. The typical foramina found in the sphenoid bone are the following seven: optic canal, superior orbital fissure, foramen rotundum, inferior orbital fissure, foramen ovale, foramen spinosum and foramen lacerum. However, in a skull belonging to the collection of the anatomic laboratory of an university of the South of Brazil, it was found an unusual foramen in the body of the sphenoid bone, below the optic canal, connecting the middle cranial fossa with the nasal cavity; a foramen not yet described in the literature. The goal of this paper was to check the presence of this foramen in dry skulls that had their base exposed, verifying their prevalence in the collection of the anatomic labs of the participating universities. Therefore, a search was made in all of the skulls, following the inclusion criteria, in three universities of Rio Grande do Sul, looking for the same observed foramen. The analysis was performed in other 71 skulls, finding the uncommon foramen in another 3 skulls, making a total of 5.4%. Among them, two had this foramen unilaterally and the other two presented the foramen bilaterally (2.7 %). The analysis was performed in dry skulls. It was not possible to see what structures could go through it. The knowledge of the existence of this foramen entails the need to, in the future, research in other cadavers in gross anatomy available in these institutions in order to identify possible anatomic structures that cross this foramen as well as their functions. The discovery of this anatomic variations can benefit neurosurgeons, antropologists, radiologists and others professionals in the health field, as well as showing itself as a variation depending on other variables. Future perspectives of this study will be concentraded on the observation of the existence of this foramen in cadavers during dissection and removal of the brains.This abstract is from the Experimental Biology 2018 Meeting. There is no full text article associated with this abstract published in The FASEB Journal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.