RNA secondary structures are important in many biological processes and efficient structure prediction can give vital directions for experimental investigations. Many available programs for RNA secondary structure prediction only use a single sequence at a time. This may be sufficient in some applications, but often it is possible to obtain related RNA sequences with conserved secondary structure. These should be included in structural analyses to give improved results. This work presents a practical way of predicting RNA secondary structure that is especially useful when related sequences can be obtained. The method improves a previous algorithm based on an explicit evolutionary model and a probabilistic model of structures. Predictions can be done on a web server at http://www.daimi.au.dk/~compbio/pfold.
The phylogenetic tree relating the sequences can be found by maximum likelihood (ML) estimation from the model introduced here. The tree is shown to reveal information about the structure, due to mutation patterns. The inclusion of a prior distribution of RNA structures ensures good structure predictions even for a small number of related sequences. Prediction is carried out using maximum a posteriori estimation (MAP) estimation in a Bayesian approach. For small sequence sets, the method performs very well compared to current automated methods.
Sequence alignment underpins all of comparative genomics, yet it remains an incompletely solved problem. In particular, the statistical uncertainty within inferred alignments is often disregarded, while parametric or phylogenetic inferences are considered meaningless without confidence estimates. Here, we report on a theoretical and simulation study of pairwise alignments of genomic DNA at human-mouse divergence. We find that >15% of aligned bases are incorrect in existing whole-genome alignments, and we identify three types of alignment error, each leading to systematic biases in all algorithms considered. Careful modeling of the evolutionary process improves alignment quality; however, these improvements are modest compared with the remaining alignment errors, even with exact knowledge of the evolutionary model, emphasizing the need for statistical approaches to account for uncertainty. We develop a new algorithm, Marginalized Posterior Decoding (MPD), which explicitly accounts for uncertainties, is less biased and more accurate than other algorithms we consider, and reduces the proportion of misaligned bases by a third compared with the best existing algorithm. To our knowledge, this is the first nonheuristic algorithm for DNA sequence alignment to show robust improvements over the classic Needleman-Wunsch algorithm. Despite this, considerable uncertainty remains even in the improved alignments. We conclude that a probabilistic treatment is essential, both to improve alignment quality and to quantify the remaining uncertainty. This is becoming increasingly relevant with the growing appreciation of the importance of noncoding DNA, whose study relies heavily on alignments. Alignment errors are inevitable, and should be considered when drawing conclusions from alignments. Software and alignments to assist researchers in doing this are provided at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.