In consideration of the financial indicators of financial structure, solvency, operating ability, profitability, and cash flow as well as the non-financial indicators of firm size and corporate governance, the algorithms of multivariate adaptive regression splines (MARS) and queen genetic algorithm-support vector regression (QGA-SVR) are used in this study to create a comprehensive financial forecast of operating revenue, earnings per share, free cash flow, and net working capital to help enterprises forecast their future financial situation and offer investors and creditors a reference for investment decision-making. This study's objectives are achieved through the following steps: (i) establishment of feature indicators for financial forecasting, (ii) development of a financial forecasting method, and (iii) demonstration of the proposed method and comparison with existing methods.INDEX TERMS Financial forecasting, multivariate adaptive regression splines (MARS), queen genetic algorithm (QGA), support vector regression (SVR).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.