A recursive circulant graph G(N,d) has N = cdm vertices labeled from 0 to N - 1, where d ⩾ 2, m ⩾ 1, and 1 ⩽ c < d, and two vertices x,y ∈ G(N,d) are adjacent if and only if there is an integer k with 0 ⩽ k ⩽ ⌈ log d N⌉ - 1 such that x ± dk ≡ y ( mod N). With the aid of recursive structure, such class of graphs has many attractive features and was considered as a topology of interconnection networks for computing systems. The design of multiple independent spanning trees (ISTs) has many applications in network communication. For instance, it is useful for fault-tolerant broadcasting and secure message distribution. In the previous work of Yang et al. (2009), we provided a constructing scheme to build k ISTs on G(cdm,d) with d ⩾ 3, where k is the connectivity of G(cdm,d). However, the proposed constructing rules cannot be applied to the case of d = 2. For the integrity of solving the IST problem on recursive circulant graphs, this paper deals with the case of G(2m,2) using a set of different constructing rules. Especially, we show that the heights of ISTs for G(2m,2) are lower than the known optimal construction of hypercubes with the same number of vertices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.