Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
A new track swtich and crossing (S&C), the back to back bistable (B2B) switch, is proposed that has shown potential to significantly reduce the wheel/rail contact forces through the switch due to its more continuous wheel/rail contact interface and more uniform track stiffness arising from the elimination of the crossing nose. This offers a major reduction on maintenance cost of future S&Cs. The paper explains the concept and identifies the design guidelines for a current layout and uses vehicle/turnout dynamic modelling to predict wheel rail forces through a switch to identify performance improvements relative to a conventional S&C. Both multi-body simulation (MBS) and Finite Element (FE) model have been developed to account for dynamic and thermal analysis. The new design has shown improvements in lateral and vertical wheel-rail contact forces and less relative rail displacements due to thermal effect compared to the conventional S&C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.