Internet of Things (IoT) devices incorporate a large amount of data in several fields, including those of medicine, business, and engineering. User authentication is paramount in the IoT era to assure connected devices' security. However, traditional authentication methods and conventional biometrics-based authentication approaches such as face recognition, fingerprints, and password are vulnerable to various attacks, including smudge attacks, heat attacks, and shoulder surfing attacks. Behavioral biometrics is introduced by the powerful sensing capabilities of IoT devices such as smart wearables and smartphones, enabling continuous authentication. Artificial Intelligence (AI)-based approaches introduce a bright future in refining large amounts of homogeneous biometric data to provide innovative user authentication solutions. This paper presents a new continuous passive authentication approach capable of learning the signatures of IoT users utilizing smartphone sensors such as a gyroscope, magnetometer, and accelerometer to recognize users by their physical activities. This approach integrates the convolutional neural network (CNN) and recurrent neural network (RNN) models to learn signatures of human activities from different users. A series of experiments are conducted using the MotionSense dataset to validate the effectiveness of the proposed method. Our technique offers a competitive verification accuracy equal to 98.4%. We compared the proposed method with several conventional machine learning and CNN models and found that our proposed model achieves higher identification accuracy than the recently developed verification systems. The high accuracy achieved by the proposed method proves its effectiveness in recognizing IoT users passively through their physical activity patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.