The tempering of re-austenized, quenched and tempered (RAQT) martensitic steels is an extensively studied and well understood field of metallurgy. However, a similar understanding of the effect of tempering on direct-quenched (DQ) high-strength steels has been lacking. Now, for the first time, the effect of tempering in the range of 250-650 °C on the strength, toughness, bendability, microstructure, crystallography and dislocation density of a DQ steel is reported. In the case of tempering at 570 °C, the effects of having a RAQ or DQ starting condition are compared. For the composition and thermal cycles studied, it was found that a peak tempering temperature in the range of 570-600 °C resulted in a DQT steel with an optimal balance of strength, bendability and toughness, i.e. a yield strength greater than 960 MPa, a minimum usable bending radius of 2 times the sheet thickness and T28J of-50 to-75 °C depending on the test direction. Crystallographic texture, dislocation density and the distribution of carbides are important factors affecting the bendability of DQT strip. Tempering had no effect on texture, but strongly influenced the size and distribution of carbides thereby resulting in differences in bendability and impact toughness transition temperature.
New ultra high strength (UHS) steels have been developed in order to get advantages in machine design and construction. Following benefits can be obtained for example:
- less material usage due to lighter constructions;
- better payload and less fuel consumption in vehicle industry;
- energy saving in material production.
A rough distinction of structural steels can be defined to ductile steels, with tensile strength less than 300 MPa, and high strength steels, up to 700 Mpa. A steel material can be defined as UHS steel when the tensile strength exceeds 700 MPa. Steels with yield strength of 1500 Mpa have been developed so far. UHS steels can also be divided into structural steels and wear resistant steels. With the tensile strength also the hardness increases and the tensile strain decreases. That causes several difficulties when the material is processed into products. Especially mechanical processing like bending, machining and shearing gets difficult as the material strength increases. That causes problems for the construction material users to find the proper manufacturing methods in production.
In Oulu University Production Technology Laboratory material processing tests have been performed during several years in co-operation with the local steel manufacturer. The usability tests comprise mainly of bending and machining tests. Shearing and welding tests have been made to a smaller extent. Also laser treatment has been used for local heat conditioning in order to improve the bending and shearing properties, but these techniques are not yet widely used in production.
The bending tests are carried out with standard bending tools and test steel plates with standard dimensions. The plate thickness varies depending on the test material. The target is to determine the reliable minimum bending radiuses whereby the plate can be bent without failure, from both sides and along the rolling direction and orthogonally to that. Also the springback angle is measured and the bent surfaces are evaluated according to several criteria. When necessary, also the mechanical testing of the formed material is carried out.
The machining tests are made mainly by drilling. Also some milling tests have been performed. Drilling is a convenient way of machining testing because a substantial amount of holes can be drilled in one test plate. The drilling power can be observed precisely by monitoring the spindle power. Also a variety of different tool types can be used, from uncoated HSS drills to boring tools with indexable inserts. The optimal machining parameters (feed and speed) will be defined according to maximum tool life and minimum machining costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.