Electron injection from the transition metal complex Ru(dcbpy)(2)(NCS)(2) (dcbpy = 4,4'-dicarboxy-2,2'-bipyridine) into a titanium dioxide nanocrystalline film occurs on the femto- and picosecond time scales. Here we show that the dominating part of the electron transfer proceeds extremely rapidly from the initially populated, vibronically nonthermalized, singlet excited state, prior to electronic and nuclear relaxation of the molecule. The results are especially relevant to the understanding and design of molecular-based photovoltaic devices and artificial photosynthetic assemblies.
Time-resolved absorption spectroscopy was used to study the femtosecond and picosecond time scale electron injection from the excited singlet and triplet states of Ru(dcbpy) 2 (NCS) 2 (RuN3) into titanium dioxide (TiO 2 ) nanocrystalline particle film in acetonitrile. The fastest resolved time constant of ∼30 fs was shown to reflect a sum of two parallel ultrafast processes, nonergodic electron transfer (ET) from the initially excited singlet state of RuN3 to the conduction band of TiO 2 and intersystem crossing (ISC). The branching ratio of 1.5 between the two competing processes gives rate constants of 1/50 fs -1 for ET and 1/75 fs -1 for ISC. Following the ultrafast processes, a minor part of the electron injection (40%) occurs from the thermalized triplet state of RuN3 on the picosecond time scale. The kinetics of this slower phase of electron injection is nonexponential and can be fitted with time constants ranging from ∼1 to ∼60 ps.
The present review describes the use of quantum chemical methods in estimation of structures and electronic transition energies of photosynthetic pigments in vacuum, in solution and imbedded in proteins. Monomeric Mg-porphyrins, chlorophylls and bacteriochlorophylls and their solvent 1:1 and 1:2 complexes were studied. Calculations were performed for Mg-porphyrin, Mg-chlorin, Mg-bacteriochlorin, mesochlorophyll a, chlorophylls a, b, c(1), c(2), c(3), d and bacteriochlorophylls a, b, c, d, e, f, g, h, plus several homologues. Geometries were optimised with PM3, PM3/CISD, PM5, ab initio HF (6-31G*/6-311G**) and density functional B3LYP (6-31G*/6-311G**) methods. Spectroscopic transition energies were calculated with ZINDO/S CIS, PM3 CIS, PM3 CISD, ab initio CIS, time-dependent HF and time-dependent B3LYP methods. Estimates for experimental transition energies were obtained from linear correlations of the calculated transition energies of 1:1 solvent complexes against experimentally recorded solution energies (scaling). According to the calculations in five-coordinated solvent complexes the magnesium atom lies out of the porphyrin plane, while in six-coordinated complexes the porphyrin is nearly planar. Charge densities on magnesium and nitrogen atoms were strongly dependent on the computational method deployed. Several dark states of low oscillator strength below the main Soret band were predicted for solvent complexes and chlorophylls and bacteriochlorophylls in protein environment. Such states, though not yet identified experimentally, might serve as intermediate states for excitation energy transfer in photosynthetic complexes. Q(y), Q(x) and Soret transition energies were found to depend on the orientation of the acetyl group and external pressure. A method to estimate site energies and dimeric interaction energies and to simulate absorption and CD spectra of photosynthetic complexes is described. Simulations for the light harvesting complexes Rhodospirillum molischianum, chlorosomes of Chlorobium tepidum and Chloroflexus aurantiacus, and LHC-II of Spinacia oleracea are presented as examples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.